欢迎来到天天文库
浏览记录
ID:41975840
大小:29.50 KB
页数:4页
时间:2019-09-05
《和初二学生谈如何学好数学初三数学学习方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、和初二学生谈如何学好数学初三数学学习方法一、该记的记,该背的背,不要以为理解了就行有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九农”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做39吋用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用人家熟记的法则做出来的。同吋,数学屮还有人量的规定需要记忆,比如规定(a工0)等等。因此,我觉得数
2、学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背涌,朗朗上口。比如人家熟悉的“整式乘法三个公式”,我看在座的有的背得出,有的就背不出。在这里,我向背不岀的同学敲一敲警钟,如果背不出这三个公式,将会对今后的学习造成很人的麻烦,因为今后的学习将会人量地川到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向
3、的变形。对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应川它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。二、儿个重要的数学思想1、“方程”的思想数学是研究事物的空间形式和数量
4、关系的,初中故重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者Z间就有一种等量关系,可以建立一个相关等式:速度*时间二路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何—•个一元一次方程都能顺利地解出來。初二、初三我们还将学习解一元二次方程、二元
5、二次方程组、简单的三幷方程;到了高屮我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维儿乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和己知量的错综
6、复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。2、“数形结合”的思想大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支棗•代数和几何,代数是研究“数”的,儿何是研究“形”的。但是,研究代数要借助“形”,研究儿何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究儿何问题的一门课,叫做“解析几何”。在初三,建立平血直角处标系后,研究函数的问题就离不开图象了。
7、往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习屮,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图來分析一帝,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。3、“对应”的思想“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子対应一个抽象的数将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。
8、比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们述将看到数轴上的点与实数Z间的一一对应,直角朋标平血上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今灰的学习中将会发挥越來越
此文档下载收益归作者所有