资源描述:
《hadoop大数据平台分布式集群环境搭建安装规划设计》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、hadoop大数据平台分布式集群环境搭建安装规划Hadoop分布式集群环境搭建是每个入门级新手都非常头疼的事情,因为你可能花费了很久的时间在搭建运行环境,最终却不知道什么原因无法创建成功。但对新手来说,运行环境搭建不成功的概率还蛮咼的。在之前的分享文章中给hadoop新手入门推荐的大快搜索DKHadoop发行版在运行环境安装方面的确要比其他的发行版hadoop要简单的多,毕竟DKHadoop是对底层重新集成封装的,对与硏究hadoop尤其是入门级新手来说是非常友好的一个发行版!关于DKHadoop的安装留在后面再给大家分享,本篇就跟大家聊
2、一聊关于【hadoop分布式集群环境搭建规划】。WEB界面/APIlsQ/应用程序MYSQI内核DK•计■DK.蛭爾SQL压缩算法机器4NameNodeResourceManagerNameNodeDataNodeResourceManagerNodeManagerDataNodeNodeManagerDataNodeNodeManager1.分布式机器架构图:机器2其中机器1主节点,机器2从节点,机器3、机器4等都是计算节点。当主节点宕机后从节点代替主节点工作,正常状态是从节点和计算节点一样工作。这种架构设计保证数据完整性。首先我们保证
3、每台计算节点上分别有一个DataNode节点和NodeManager节点。因为都是计算节点,真正干活的。在数量上我们要保证。那么NameNode和ResourceManager是两个非常重要的管理者,我们客户端的请求第一时间与NameNode和ResourceManager打交道。NameNode负责管理HDFS文件系统的元数据,客户端不管是读文件还是写文件都要首先找到NameNode获取文件的元数据再进行文件的操作。ResourceManager也是如此,它负责管理集群中的资源和任务调度,你也可以把它视为〃大数据操作系统"。客户端能否提
4、交应用并运行,就看你的ResourceManager是否正常。1.达到多大规模的数据,才值得用大数据的方式来处理?第一,从数据量角度,但是并无确定的答案,一般定性角度来说,你觉得这个数据量单机处理不了,比如内存限制,时间过久等,就用集群,但是要降低时间,你的处理逻辑必须能分布式处理,定量就是一般数据或者未来的数据量会达到PB级别(可能GB)或以上就要用分布式,当然前提也是你的处理逻辑可以逬行分布式。第二从算法角度咸者处理逻辑的时间复杂度来说,比如虽然你的数据记录不是很多,但是你的算法或者处理逻辑的时间复杂度是n的平方,甚至更高,同时你的算
5、法可以进行分布式设计,那么就考虑用分布式,比如你的记录虽然只有lw,但是时间复杂度确是n的平方,那么你想想单机要多久,要是你的算法可以进行分布式处理,那么就考虑用分布式。2.制约大数据处理能力的几个问题a.网络带宽网络是联接计算机的纽带,这个纽带当然越宽越好,这样可以在计算机资源许可的情况下,在单位时间内传输更多的数据,让计算机处理更多的数据。现在企业网络中,普遍采用的多是百兆网络,也有千兆,万兆虽然有,但是用得不多。b、磁盘所有数据,不管它从哪里来,最终都要存进不同的硬盘里面,或者闪存盘。闪存盘的读写效率比硬盘高得多,但是缺点也明显:价
6、格贵、容量小。现在的存储介质主要还是硬盘,硬盘有顺序读写和随机读写两种模型。顺序读写是磁头沿着磁道,好象流水线一样,有规律的向前滚动进行。随机读写是磁头跳跃着,找到磁道上留空的地方,把数据写进去。很明显,顺序读写比随机读写效率高,所以系统架构师在设计大数据存储方案时,都是以顺序读写为主要选择。计算机的数量分布式的集群环境下,计算机的规模当然越大越好。这样在数据等量的情况下,计算机数量越多,分配给每台计算机的数据越少,处理效率自然就高了。但是计算机的数量也不是可以无限增加,集群对计算机规模的容纳有一个峰值,超过这个峰值,再提升就很困难,处理
7、不好还会下降。原因主要来自木桶短板效应、边界效应、规模放大效应。根据多年前的一个测试,当时以Pentium3和Pentium4芯片为基础平台,配合100M网络,在上面运行LAXCUS大数据系统。当达到干台计算机的规模时,瓶颈开始显露出来。如果现在用新的X86芯片,加上更高速的网络,应该是能够容纳更多的计算机。氏代码质量这不是关键问题,但是是企业必须关注的一个问题。这和程序员编写的计算机代码质量有关。实际上,每个大数据产品都是半成品,它们只是提供了一个计算框架,要实际应用到企业生产中,里面还有大量业务编码需要程序员来实现。要使大数据应用达到
8、高质量,技术负责人要做好前期设计,清楚和规范业务流程,程序员拿到方案后,用统一格式编写代码。这是双方互相配合的过程。或者说,要做好协同和协调的事情。