第十章 习题答案

第十章 习题答案

ID:41713432

大小:188.00 KB

页数:5页

时间:2019-08-30

第十章 习题答案_第1页
第十章 习题答案_第2页
第十章 习题答案_第3页
第十章 习题答案_第4页
第十章 习题答案_第5页
资源描述:

《第十章 习题答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十章博弈论初步1.什么是纳什均衡?纳什均衡一定是最优的吗?解答:(1)所谓纳什均衡,是参与人的一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。(2)不一定。纳什均衡可能是最优的,也可能不是最优的。例如,在存在多个纳什均衡的情况下,其中有一些纳什均衡就不是最优的;即使在纳什均衡是唯一时,它也可能不是最优的——因为与它相对应的支付组合可能会小于与其他策略组合相对应的支付组合。2.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡最多可有几个?为什么?解答

2、:在只有两个参与人(如A和B)且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡最多可有四个。例如,当A与B的支付矩阵可分别表示如下时,总的支付矩阵中所有四个单元格的两个数字均有下划线,从而,总共有四个纳什均衡。  A的支付矩阵=  B的支付矩阵=3.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,纯策略的纳什均衡可能有三个。试举一例说明。解答:例如,当参与人A与B的支付矩阵可分别表示如下时,总的支付矩阵中恰好有三个单元格的两个数字均有下划线,从而,总共有三个纳什均衡。  A

3、的支付矩阵=  B的支付矩阵=4.在只有两个参与人且每个参与人都只有两个策略可供选择的情况下,如何找到所有的纯策略纳什均衡?解答:可使用条件策略下划线法。具体步骤如下:首先,设两个参与人分别为左参与人和上参与人,并把整个的支付矩阵分解为这两个参与人的支付矩阵;其次,在左参与人的支付矩阵中,找出每一列的最大者,并在其下划线;再次,在上参与人的支付矩阵中,找出每一行的最大者,并在其下划线;再再次,将已经划好线的两个参与人的支付矩阵再合并起来,得到带有下划线的整个支付矩阵;最后,在带有下划线的整个支付矩

4、阵中,找到两个数字之下均划有线的所有的支付组合。这些支付组合所代表的策略组合就是纳什均衡。5.设有A、B两个参与人。对于参与人A的每一个策略,参与人B的条件策略有无可能不止一个。试举一例说明。解答:例如,在如下的二人同时博弈中,当参与人A选择上策略时,参与人B既可以选择左策略,也可以选择右策略,因为他此时选择这两个策略的支付是完全一样的。因此,对于参与人A的上策略,参与人B的条件策略有两个,即左策略和右策略。6.如果无论其他人选择什么策略,某个参与人都只选择某个策略,则该策略就是该参与人的绝对优势

5、策略(简称优势策略)。试举一例说明某个参与人具有某个优势策略的情况。解答:例如,在如下的二人同时博弈中,无论参与人A是选择上策略还是选择下策略,参与人B总是选择左策略,因为他此时选择左策略的支付总是大于选择右策略。因此,在这一博弈中,左策略就是参与人B的绝对优势策略。7.混合策略博弈与纯策略博弈有什么不同?解答:在纯策略博弈中,所有参与人对策略的选择都是“确定”的,即总是以100%的可能性来选择某个策略,而在混合策略博弈中,参与人则是以一定的可能性来选择某个策略,又以另外的可能性选择另外一些策略。

6、在这种情况下,参与人选择的就不再是原来的单纯的策略(如上策略或下策略),而是一个概率向量(如以某个概率选择上策略,以另外一个概率选择下策略)。8.条件混合策略与条件策略有什么不同?解答:例如,在一个只包括参与人A与参与人B的二人同时博弈中,参与人A的条件策略是A在B选择某个既定策略时所选择的可以使其支付达到最大的策略。相应地,参与人A的条件混合策略是A在B选择某个既定的混合策略时所选择的可以使其期望支付达到最大的混合策略。9.混合策略纳什均衡与纯策略纳什均衡有什么不同?解答:在纯策略博弈中,纳什均

7、衡是参与人的一种策略组合,在该策略组合上,任何参与人单独改变其策略都不会得到好处;在混合策略博弈中,纳什均衡是参与人的一种概率向量组合,在该概率向量组合上,任何参与人单独改变其概率向量都不会得到好处。10.设某个纯策略博弈的纳什均衡不存在。试问:相应的混合策略博弈的纳什均衡会存在吗?试举一例说明。解答:在同时博弈中,纯策略的纳什均衡可能存在,也可能不存在,但相应的混合策略纳什均衡总是存在的。例如,在下面的二人同时博弈中,根据条件策略下划线法可知,由于没有一个单元格中两个数字之下均有下划线,故纯策略

8、的纳什均衡不存在,但是,相应的混合策略纳什均衡却是存在的。首先,分别计算A与B的条件混合策略。  EA=3p1q1+9p1(1-q1)+7(1-p1)q1+2(1-p1)(1-q1)=3p1q1+9p1-9p1q1+7q1-7p1q1+2-2q1-2p1+2p1q1=7p1-11p1q1+5q1+2=p1(7-11q1)+5q1+2  EB=6p1q1+2p1(1-q1)+3(1-p1)q1+8(1-p1)(1-q1)=6p1q1+2p1-2p1q1+3q1-3p1q1+8-8q1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。