ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料

ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料

ID:41636045

大小:1.17 MB

页数:10页

时间:2019-08-29

ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料_第1页
ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料_第2页
ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料_第3页
ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料_第4页
ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料_第5页
资源描述:

《ACOUSTIC MODELING IN STATISTICAL PARAMETRIC SPEECH SYNTHESIS – FROM HMM TO LSTM-RNN英文学习材料》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ACOUSTICMODELINGINSTATISTICALPARAMETRICSPEECHSYNTHESIS–FROMHMMTOLSTM-RNNHeigaZenGoogleABSTRACTStatisticalparametricspeechsynthesis(SPSS)combinesanacous-ticmodelandavocodertorenderspeechgivenatext.Typicallytextdecisiontree-clusteredcontext-dependenthiddenMarkovmodels(concept)(HMMs)

2、areemployedastheacousticmodel,whichrepresentarelationshipbetweenlinguisticandacousticfeatures.Recently,ar-tificialneuralnetwork-basedacousticmodels,suchasdeepneuralnetworks,mixturedensitynetworks,andlongshort-termmemoryrecurrentneuralnetworks(LSTM-RNNs),showedsignificantim-fundament

3、alreqvoiced/unoicedfreqtransercharprovementsovertheHMM-basedapproach.ThispaperreviewsfrequencyspeechtransfertheprogressofacousticmodelinginSPSSfromtheHMMtothecharacteristicsLSTM-RNN.magnitudestart--endIndexTerms—Statisticalparametricspeechsynthesis;artificialSoundsourcefundamentaln

4、euralnetworks;hiddenMarkovmodels;longshort-termmemory;voiced:pulsefrequencyunvoiced:noisemodulationofcarierwavebyspechinformation1.INTRODUCTIONairflowThegoaloftext-to-speech(TTS)synthesisistorenderanaturallyFig.1.Outlineofspeechproductionprocess.soundingspeechwaveformgivenatexttob

5、esynthesized.Figure1outlinesahumanspeechproductionprocess.Atext(orconcept)isfirsttranslatedintomovementsofarticulatorsandorgans.Usingback-endpartofTTSsystems,suchassmallfootprint[3,4]andflex-air-flowfromalung,vocalsourceexcitationsignalscontainingpe-ibilitytochangeitsvoicecharacteris

6、tics[5–8].However,thenatu-riodic(byvocalcordvibration)andaperiodic(byturbulentnoise)ralnessofthesynthesizedspeechfromSPSSisnotasgoodasthatcomponentsaregenerated.Byfilteringthesourcesignalsbytime-ofthebestsamplesfromconcatenativespeechsynthesizers.Zenetvaryingvocaltracttransferfunct

7、ionscontrolledbythearticulators,al.reportedthreemajorfactorsthatcandegradethenaturalness[1];theirfrequencycharacteristicsaremodulated.Finally,thefilteredqualityofvocoder,accuracyofacousticmodel,andeffectofover-sourcesignalsareemitted.TheaimofTTSistomimicthisprocesssmoothing.Thispap

8、eraddressestheaccuracyofacousticm

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。