欢迎来到天天文库
浏览记录
ID:4160091
大小:271.33 KB
页数:8页
时间:2017-11-29
《julias+lemma+and+bloch+constants》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、万方数据SCIENCEINCHINA(SeriesA)Julia’slemmaandBlochconstantscH。NH。。i.。i(陈怀惠),&xl。NGc。。。舀i(£袅继)算1DepartmentofMathematics.NanjingNormalUniversity.Nanjing210097.China;2DepartmentofMathematics.HuaiyinTeacher’sCollege.Huaiyin223001,ChinaCorrespondenceshouldbeaddressedtoChenHuaihui(email:hhchen@publ
2、iclpttjscn)ReceivedApril11.2002AbstractTheclassicalJulialslemmaisimproved.branchpointsofBlochfunctionsareinvestigated.andnewlowerboundsofBlochconstantsforfunctionswithbranchpointsareobtainedKeywords:analyticfunction,Julia’slemma,Blochfunction,BlochconstantLetD={。∈C:⋯<1)betheunitdiskontheco
3、mplexplaneC,letD(r)={2:㈦4、diusofthelargestunivalentdiskcontainedinf(D)withcenter,(z)LetBi=snp{r(:,f):2∈D}.ForapositiveintegerTt,let珥。(D)betheclassofallanalyticfunctions,onDsuchthatf’(2)=0impliesf”fz)一=,m’(2)=0TheBlochconstantfor月nisdefinedbyB。=inf{Bf:f∈上k(D),,’(o)=1}Fortheabovenotions.seerefs『1—5]Afunctonf∈H1(D)isc5、alledaBlochfunctionifsup{(1一z12)If’(。):。∈D)<+ooBy8n,wedenotethesubclassofBlochfunctionswhichsatisfyconditionsf∈上k(D),f(0)=0,,『(o)=1,and(1一H2),”)I≤1for。∈DLandau[“showsthatB。=inf{Bf:f∈B。}AsmalllowerboundofBloch’sconstantB=B1canbeobtainedbyanelementarymethod[3,⋯In1938.Ahlfors[6,7】generalizedt6、heSchwarz—Picklemmawithwhichheobtainedaremarkablelowerestimate:B≥、/3/4≈o4330.Atthesametime,AhlforsandGrunsky{“gaveanimportantexampletoestablishanupperboundofB,whichisexpressedbyGammafunctionsandequalto0.4719approximatelyPeopleconjecturedthatthisupperboundistheprecisevalueofBloch’sconstantI7、tisafamousandextremelyhardproblemtofindtheexactvalueofBloch’sconstantForB。,n>1,Ahlfors’methodalsogavealowerbound:Bn≥、/n(n+2)/(2(n+1))TheirupperboundswereinvestigatedbyMinda{51Overalongperiodoftime,noessentialachievementhadbeenattainedinthistopicuntilBonk’swork
4、diusofthelargestunivalentdiskcontainedinf(D)withcenter,(z)LetBi=snp{r(:,f):2∈D}.ForapositiveintegerTt,let珥。(D)betheclassofallanalyticfunctions,onDsuchthatf’(2)=0impliesf”fz)一=,m’(2)=0TheBlochconstantfor月nisdefinedbyB。=inf{Bf:f∈上k(D),,’(o)=1}Fortheabovenotions.seerefs『1—5]Afunctonf∈H1(D)isc
5、alledaBlochfunctionifsup{(1一z12)If’(。):。∈D)<+ooBy8n,wedenotethesubclassofBlochfunctionswhichsatisfyconditionsf∈上k(D),f(0)=0,,『(o)=1,and(1一H2),”)I≤1for。∈DLandau[“showsthatB。=inf{Bf:f∈B。}AsmalllowerboundofBloch’sconstantB=B1canbeobtainedbyanelementarymethod[3,⋯In1938.Ahlfors[6,7】generalizedt
6、heSchwarz—Picklemmawithwhichheobtainedaremarkablelowerestimate:B≥、/3/4≈o4330.Atthesametime,AhlforsandGrunsky{“gaveanimportantexampletoestablishanupperboundofB,whichisexpressedbyGammafunctionsandequalto0.4719approximatelyPeopleconjecturedthatthisupperboundistheprecisevalueofBloch’sconstantI
7、tisafamousandextremelyhardproblemtofindtheexactvalueofBloch’sconstantForB。,n>1,Ahlfors’methodalsogavealowerbound:Bn≥、/n(n+2)/(2(n+1))TheirupperboundswereinvestigatedbyMinda{51Overalongperiodoftime,noessentialachievementhadbeenattainedinthistopicuntilBonk’swork
此文档下载收益归作者所有
点击更多查看相关文章~~