资源描述:
《DES算法与应用实现剖析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、DES算法及其应用实现1目录算法描述算法概述DES算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM公司研制的对称密码体制加密算法。DES工作的基本原理入口参数有三个:key、data、mode。key为加密解密使用的密钥,data为加密解密的数据,mode为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,key用于对数据加密,当模式为解密模式时,key用于对数据解密。算法原理算法原理-初始置换其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分
2、,每部分各长32位置换规则:58501234261810260524436282012462544638302214664564840322416857494133251791595143352719113615345372921135635547393123157算法描述-迭代运算迭代运算:Li=Ri-1Ri=Li-1⊕F(Ri-1,Ki)算法描述-迭代运算(F变换)F变换:F(Ri-1,Ki)R首先被扩展为48bit,扩展表如下:3212345456789891011121312131415161716171
3、819202120212223242524252627282928293031321扩展后的48bit,再与子密钥Ki异或,然后通过一个S盒,产生一个32bit的输出;再进行一次置换,得到F变换的输出。置换规则如下:1672021291228171152326518311028241432273919133062211425算法描述-迭代运算(S盒)S盒变换:输入6bit,输出4bit;设D=D1D2D3D4D5D6则令列=D2D3D4D5,行=D1D6查表找到对应的输出。算法描述-迭代运算(S盒)SBOX-11
4、4,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13SBOX-215,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,0,14,7,11,10,4,13,1,5,8,12,
5、6,9,3,2,15,13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9算法描述-迭代运算(S盒)SBOX-310,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12SBOX-47,13,14,3,0,6,9,10,1,2,8,5,11,12,4,
6、15,13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14算法描述-迭代运算(S盒)SBOX-52,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,11,8,12,7,
7、1,14,2,13,6,15,0,9,10,4,5,3SBOX-612,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13算法描述-迭代运算(S盒)SBOX-74,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,13,0,11,7,4,9,1,10
8、,14,3,5,12,2,15,8,6,1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12SBOX-813,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,7,11,4,1,9