欢迎来到天天文库
浏览记录
ID:41313864
大小:46.00 KB
页数:27页
时间:2019-08-21
《材料物理性能期末考试复习重点(非常全,可缩印)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、材料物理性能期末考试复习重点(非常全,可缩印)导读:就爱阅读网友为您分享以下“材料物理性能期末考试复习重点(非常全,可缩印)”的资讯,希望对您有所帮助,感谢您对92to.com的支持!热容是物体温度升高1K所需要增加的能量。它反映材料从周围环境中吸收热量的能力。是分子热运动的能量随温度而变化的一个物理量。不同环境下,物体的热容不同。热容是随温度而变化的,在不发生相变的条件下,多数物质的摩尔热容测量表明,定容热容C和温度的关系与定压热容有相似的规律。(1)在高温区:定压热容Cv的变化平缓;(2)低温区:Cv与T成正比;(3)温度接近0K时,Cv与T成正
2、比;(4)0K时,Cv=0;热容的来源:受热后点阵离子的振动加剧和体积膨胀对外做功,此外还和电子贡献有关,后者在温度极高(接近熔点)或极低(接近0K)的范围内影响较大,在一般温度下则影响很小。晶态固体热容的经验定律和经典理论:(1)元素的热容定律—杜隆一珀替定律:热容是与温度T无关的常数。恒压下元素的原子热容为25J/(kmol);(2)化合物的热容定律—奈曼—柯普定律:化合物分子热容等于构成该化合物各元素原子热容之和。德拜模型:考虑了晶体中原子的相互作用。晶体中点阵结构对热容的主要贡献是弹性波振动,波长较长的声频支在低温下的振动占主导地位,并且声频波
3、的波长远大于晶体的晶格常数,可以把晶体近似为连续介质,声频支的振动近似为连续,具有0~ωmax的谱带的振动。可导出定压热容的公式:Cv,m?12/5?4R(T/?D)3由上式可以得到如下的结论:(1)当温度较高时,即处于高温区定压热容=3Nk=3R,即杜隆—珀替定律,与实验结果吻合;(2)当温度很低时,小于德拜温度时,定压热容与T成正比,与实验结果吻合。(3)当T→0时,CV趋于0,与实验大体相符。但T定律,与实验结果的T规律有差距。德拜模型的不足:(1)由于德拜把晶体近似为连续介质,对于原子振动频率较高的部分不适用,使得对一些化合物的热容的计算与
4、实验不符。(2)对于金属类晶体,没有考虑自由电子的贡献,使得其在极高温和极低温区与实验不符。(3)解释不了超导现象。金属材料热容:a.自由电子对热容的贡献:(1)低温时:热容由点阵振动和自由电子两部分的贡献组成;(2)常温时:自由电子热容远小于点阵振动热容,可忽略;(3)极低温时:电子热容起主导作用;(4)高温时:电子热容有贡献。b.合金成分对热容的影响:合金元素加入后能生成不同的相与组织,因此合金的热容取决于组成相的性质。合金的热容是每个组成元素热容与其质量百分比的乘积之和;可通过合金的手段改变金属材料的热容。相变时的热容变化:(1)熔化和凝固:液态
5、金属的热容比固态的大。(2)一级相变和二极相变。一级相变:三态转变,多型性相转变。有潜热,热容趋于无穷。二极相变:磁转变,有序-无序转变等。在一个温度范围内逐步完成,无潜热,热容突变。(3)亚稳态组织转变:组织转变不可逆。如不发生相变,热容和温度呈线性关系;如发生相变,热容偏离直线。亚稳态(热量高)向稳态(热量低)转变要放热,导致热容下降热膨胀:物体的体积或长度随温度升高而增大的现象。热膨胀的物理本质(机制):当物体温度升高时,晶体中原子的振动加剧,相邻原子之间的平衡距离也随温度变化而变化,因此温度升高而发生膨胀现象。(1)膨胀系数与热容的关系:体膨胀
6、与定容热容成正比,它们有相似的温度依赖关系。低温下随温度升高急剧增大,高温时则趋于平缓;弹性模量与热容成反比。(2)膨胀系数与熔点的关系:熔点越高,原子间结合力越大,热膨胀系数与熔点成反比;(3)膨胀系数与德拜温度的关系:德拜温度越高,膨胀系数越小。原因:膨胀系数是原子间结合力的反映。原子间的结合力越大、膨胀系数越小。影响膨胀性能的因素:1.相变的影响①一级相变:有潜热、比热容无限大,体积发生突变,膨胀系数发生突变。②二级相变:无潜热,无体积发生突变,比热容和膨胀系数发生突变。2.组织成分的影响(1)形成固溶体:固溶体的膨胀与溶质元素的膨胀系数和含量有
7、关。溶质元素的膨胀系数高于溶剂基体时,将增大膨胀系数。(2)不同结构形态的物质:对于相同组成的物质,结构紧密的晶体膨胀系数大。单晶>多晶>纳米>非晶。孔隙越多,膨胀系越小。3.晶体各向异性的影响;4.铁磁性转变的影响。热传导:不同温度的物体或区域,在相互靠近或接触时,会以传热的形式交换能量(能量迁移)。温度梯度:单位长度的温度变化。矢量,方向指向温度升高。热导率:单位温度梯度下,单位时间内通过单位截面积的热量。热扩散率:对于不稳定导热过程的体系,引入热扩散率来描述体系的热传导能力和温度长随时间的变化。热传导的物理机制:热传导过程是材料内部的能量传输过程
8、,在固体中其载体有:自由电子、声子(点阵波)和光子(电磁辐射)。(1)金属导热机制:电子导热率
此文档下载收益归作者所有