ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学

ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学

ID:41288097

大小:259.31 KB

页数:37页

时间:2019-08-21

ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学_第1页
ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学_第2页
ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学_第3页
ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学_第4页
ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学_第5页
资源描述:

《ConstraintsinRepeatedGames-UniversityofPennsylvania在重复博弈的约束-宾夕法尼亚大学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ConstraintsinRepeatedGamesRationalLearningLeadstoNashEquilibrium…sowhatisrationallearning?Kalai&Lehrer,1993Rationallearningis…BayesianUpdatingfrequentistvs.BayesianstatisticsWhatisRationalLearning?frequentistvs.BayesianstatisticsFrequentistApproachAssumeacoin10timesanditcomesupheads8timesAfrequ

2、entistapproachwouldconcludethatthecoincomesupheads80%ofthetimeUsingtherelativefrequencyasaprobabilityestimate,wecancalculatethemaximumlikelihoodestimate(MLE)FrequentistMLEnotalwaysaccurateinallcontextsFormthemodelassertingP(head)=m,andsanobservedsequence,theMLEis:argmaxmP(s

3、m)BayesianApproach

4、Allowsustoincorporatepriorbeliefse.g.,thatourcoinisfair(whynot?)Wecanmeasuredegreesofbelief,whichcanbeupdatedinthefaceofevidenceusingBayes’theoremP(m

5、s)=(P(s

6、m)*P(m))/P(s)WealreadyhaveP(s

7、m),wecanquantifyP(m)andignorethenormalizationfactorP(s)ArgmaxmP(m

8、s)=.75forP(m)=6m(1-m)UnderWhatCond

9、itions?InfinitelyrepeatedgamesubjectivebeliefsaboutothersarecompatiblewithtruestrategiesPlayersknowtheirownpayoffmatricesPlayerschoosestrategiestomaximizetheirexpectedutilityPerfectlymonitoredDiscountedpayoffs…musteventuallyplayaccordingtoaNashequilibriumoftherepeatedgameWhatIsn’tNeededassumpti

10、onsabouttherationalityofotherplayersknowledgeofthepayoffmatricesofotherplayersDefinitionsAgameisperfectlymonitoredifallplayershaveaccesstothecompletehistoryofthegameuptothepointwheretheyarecurrentlyat.discountingintroducesafactorthatfuturepayoffsaremultipliedby:ui(f)=(1-i)∑t=0∞Ef(xit+1)itnote

11、therelationtogeometricseries…continuedbeliefsarecompatiblewithtruestrategiesifthedistributionoverinfiniteplaypathsinducedbythebeliefisabsolutelycontinuouswithrespecttothatofthetruestrategiesAmeasurefisabsolutelycontinuouswithrespecttog(denotedf<<g)ifeveryeventhavingapositivemeasureaccording

12、tofalsohasapositivemeasureaccordingtog.MoreDefinitionsLet>0andletand’betwoprobabilitymeasuresdefinedonthesamespace.is-closeto’ifthereisameasurablesetQsatisfying:(Q)and’(Q)aregreaterthan1-foreverymeasurablesetAQ(1-)’(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。