高中数学新课程创新教学设计案例50篇 22 直线方程的概

高中数学新课程创新教学设计案例50篇 22 直线方程的概

ID:41245174

大小:72.00 KB

页数:7页

时间:2019-08-20

高中数学新课程创新教学设计案例50篇 22 直线方程的概_第1页
高中数学新课程创新教学设计案例50篇 22 直线方程的概_第2页
高中数学新课程创新教学设计案例50篇 22 直线方程的概_第3页
高中数学新课程创新教学设计案例50篇 22 直线方程的概_第4页
高中数学新课程创新教学设计案例50篇 22 直线方程的概_第5页
资源描述:

《高中数学新课程创新教学设计案例50篇 22 直线方程的概》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、22直线方程的概念与直线的斜率教材分析这节内容从一个具体的一次函数及其图像入手,引入直线方程和方程的直线的概念.从研究直线方程的需要出发,引入直线在平面直角坐标系中的倾斜角和斜率的概念.然后建立了过两点的直线的斜率公式.直线方程的概念是通过初中学过的一次函数的图像引入的,是将一次函数与其图像的关系转换成直线方程与直线的对应关系.对这种关系的学习,要通过观察图像,研究图像,利用数形结合的思想,归纳和概括出什么是直线的方程和方程的直线,使学生对直线和直线方程的关系有一个初步了解.倾斜角和斜率公式都是反映直线相对于x轴正方向的倾斜程度

2、的,确切地说,倾斜角是直接反映这种倾斜程度的,斜率公式是利用直线上点的坐标来研究直线的倾斜程度的.解析几何是用数来研究形的,在研究直线时,使用斜率公式比使用倾斜角更方便,因此正确理解斜率的概念,掌握过两点的直线的斜率公式,是学习这节内容的重点,也是学好平面解析几何的关键.教学目标1.通过对本节的学习,了解直线的方程和方程的直线的概念,理解直线的倾斜角和斜率的概念,会准确地表述直线的倾斜角和斜率的意义.2.理解并掌握过两点的直线的斜率公式,并能用其解决有关的数学问题.3.初步培养学生数形结合的思想,提高学生联系、转化、归纳、概括的

3、思维能力,进一步培养学生的创新意识和分析问题、解决问题的能力.任务分析这节内容是在一次函数的基础上,通过研究一次函数和它的图像的关系,而引入的直线和方程的关系.对于直线和方程的关系,学生接受起来可能比较困难,因此在学习时要始终结合具体的直线方程和它的图像来研究,以增强直观性,便于被学生理解.直线的倾斜角和斜率是描述直线倾斜程度的,在学习过程中,一方面要注意有关概念之间的区别,另一方面要突出它们之间的联系,要充分利用图像进行具体分析,让学生注意斜率的变化和倾斜角的关系,特别是当直线的倾斜角为直角时,直线的斜率不存在的情况,进一步强

4、调:有斜率必有倾斜角与之对应;反之,有倾斜角必有斜率与之对应是不够确切的.在这节的学习中,要让学生体会“形”与“数”相互转化的思想,培养学生分析、联想、抽象、概括的能力.教学设计一、问题情境1.在初中,我们学习过一次函数y=kx+b,(k≠0),知道它的图像是一条直线l,那么满足y=kx+b的有序实数对(x,y)与直线l上的点的坐标有什么关系?能否把它推广到一般的二元一次方程和直线?2.作出函数y=2x+1的图像,研究满足y=2x+1的有序实数对与y=2x+1的图像上点的坐标的关系.二、建立模型1.学生分析讨论,师生共同总结(1

5、)有序实数对(0,1)满足函数y=2x+1,在直线l上就有一点A,它的坐标是(0,1);又如有序实数对(2,5)满足函数y=2x+1,在直线l上就有一点B,它的坐标是(2,5).(2)在直线l上取一点P(1,3),则有序实数对(1,3)就满足函数y=2x+1;又如在直线l上取一点Q(-1,-1),则有序实数(-1,-1)就满足函数y=2x+1.结论:一般地,满足函数式y=kx+b的每一对x,y的值,都是直线l上的点的坐标;反之,直线l上每一点的坐标(x,y)都满足函数式y=kx+b,因此,一次函数y=kx+b的图像是一条直线,它

6、是以满足y=kx+b的每一对x,y的值为坐标的点构成的.2.教师明晰从方程的角度看,函数y=kx+b可以看作二元一次方程y-kx-b=0,这样“满足一次函数y=kx+b的每一对(x,y)的值”,就是“二元一次方程y-kx-b=0的解x,y”;以方程y-kx-b=0的解为坐标的点就在函数y=kx+b的图像上;反过来,函数y=kx+b的图像上的任一点的坐标满足方程y-kx-b=0,这样直线和方程就建立了联系.一般地,如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上点的坐标都是这个方程的解,那么这个方程叫作这条直线的方

7、程;这条直线叫这个方程的直线.由于方程y=kx+b的图像是一条直线,因而我们今后就常说直线y=kx+b.练习:已知方程2x+3y+6=0.(1)把这个方程改写成一次函数.(2)画出这个方程对应的直线l.(3)判定点(,1),(-3,0)是否在直线l上.进一步思考如下问题:哪些条件可以确定一条直线?在平面直角坐标系中,过点P的任何一条直线l,对x轴的相应位置有哪些情形?如何刻画它们的相对位置?3.通过学生讨论,师生共同总结直线相对x轴的情形有四种,如图所示:通过分析四种情形,师生共同得出:直线相对x轴的位置情形,可用直线l和x轴所

8、成的角来描述.我们规定:x轴正向与直线向上的方向所成的角叫作这条直线的倾斜角,与x轴平行或重合的直线的倾斜角为零度角.问题:(1)在直角坐标系中,画出过点P(-1,2),倾斜角分别为45°,150°,0°,90°的四条直线.(2)直线的倾斜角的取值范围是怎样的?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。