欢迎来到天天文库
浏览记录
ID:41183157
大小:525.50 KB
页数:20页
时间:2019-08-18
《北京市各区中考数学一模试卷精选汇编 几何综合》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、几何综合东城区27.已知△ABC中,AD是的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若①直接写出和的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.27.(1)①,;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由,AD=2可得DE=1,AE.Rt△CDE中,由,DE=1,可得EC=1.∴AC.Rt△ACH中,由,可得AH;--------------4分(2)线段AH与AB+A
2、C之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH≌△AFH.∴,.∴.∵,∴.∴.∴.∴.--------------7分西城区27.正方形的边长为,将射线绕点顺时针旋转,所得射线与线段交于点,作于点,点与点关于直线对称,连接.(1)如图,当时,①依题意补全图.②用等式表示与之间的数量关系:__________.(2)当时,探究与之间的数量关系并加以证明.(3)当时,若边的中点为,直接写出线段长的最大值.【解析】(1)①补全的图形如图所示:②.(2),连接,,,
3、∴,∴,∵,,∴.(3)∵,∴点在以为直径的圆上,∴.海淀区27.如图,已知,点为射线上的一个动点,过点作,交于点,点在内,且满足,.(1)当时,求的长;(2)在点的运动过程中,请判断是否存在一个定点,使得的值不变?并证明你的判断.27..解:(1)作⊥交于.∵⊥,,∴.∴.∴.……………1分∵,,∴,.∴.∴.………………3分(2)当点在射线上且满足时,的值不变,始终为1.理由如下:………………4分当点与点不重合时,延长到使得.∵,∴.∴.∵,是公共边,∴≌.∴.………………5分作⊥于,⊥于.∵,∴.………………
4、6分∵⊥,⊥,⊥,∴四边形为矩形.∴.∵,∴.∵⊥,∴.∴,即.当点与点重合时,由上过程可知结论成立.……………7分丰台区27.如图,Rt△ABC中,∠ACB=90°,CA=CB,过点C在△ABC外作射线CE,且∠BCE=,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当=30°时,直接写出∠CMA的度数;(3)当0°<<45°时,用等式表示线段AM,CN之间的数量关系,并证明.27.解:(1)如图;…………………1分(2)45°;………………
5、…2分(3)结论:AM=CN.…………………3分证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=(180°∠ACD)=(180°90°)=45°.∴∠5=∠2+∠3=+45°-=45°.…………………5分∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠
6、6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM=AG.∴AM=CN.…………………7分(其他证法相应给分.)石景山区27.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接,若点P,Q,D恰好在同一条直线上,求证:;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.27.(1)补全图形如图1.…………………1分图1(2)①证明:图2连接,如图2,∵线
7、段绕点顺时针旋转90°得到线段,∴,.∵四边形是正方形,∴,.∴.∴△≌△.…………………3分∴,.∵在中,,∴.∵在中,,又∵,,∴.…………………5分②.…………………7分证明:过点A作AE⊥PQ于E,连接BEAC∴AE是△PAQ的垂线∵三△PAQ是等腰直角三角形(已证)∴AE是等腰直角三角形PAQ的垂线,角平分线∴∠AEP=90°,AE=PE∵正方形ABCD∴∠ABC=90°∠ACB=∠BAC=45°∠AEP+∠ABC=180°∴A,B,C,E四点共圆∴∠AEB=∠ACB=45°,∠CEB=∠BAC=45°∴
8、∠AEB=∠CEB=45°∵BE=BE∴△ABE≌△PBE(SAS)∴BP=AB朝阳区27.如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示)
此文档下载收益归作者所有