欢迎来到天天文库
浏览记录
ID:41175095
大小:6.09 MB
页数:220页
时间:2019-08-18
《新初中数学初三上册精品教案全册》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、新人教版初中数学九年级上册精品教案 全册数学教案九年级上册教学时间课题21.1二次根式课型新授教学媒体多媒体教学目标知识技能1.理解二次根式的定义,会用算术平方根的概念解释二次根式的意义.2.会确定二次根式有意义的条件,知道(≥0)是非负数,并会运用.3.会进行二次根式的平方运算,会对被开方数为平方数的二次根式进行化简.过程方法1.经历观察、比较、概括二次根式的定义.2.通过探究二次根式的条件和结果,达成知识目标2.3.通过探究和所含运算、运算顺序、运算结果分析,归纳并掌握性质.情感态度培养学生观察、猜想、探究、归纳的习惯和能力,体
2、验数学发现的乐趣.教学重点1.有意义的条件.2.≥0时≥0的应用.3.和的运算、化简教学难点<0时的化简.教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语设计:在勾股定理和四边形两章中,已经用到过简单的二次根式运算,在本章中将系统地学习二次根式的运算。本课只学习二次根式的概念及其三个运算性质.二、探究新知(一)定义及非负性活动1、填空,完成课本思考1:,,,活动2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义.活动3、给出二次根式的定义,介绍二次根式的读法.活动4、思考下列问题:①的运算结果是3,是
3、不是二次根式?3是不是?②定义中为什么要加≥0?若a<0,表示什么?有无意义?点题,板书课题.学生独立完成后,教师订正;并引导学生观察得出:四个式子表示的都是非负数的算术平方根.教师可指出算术平方根即正的平方根.可读作二次根号65,简称根号65(只有二次可简称),也可读作65的算术平方根.让学生了解本章的学习内容和本课的学习目标.算术平方根的意义是得出二次根式的性质的基础,复习算术平方根的意义便于理解定义、归纳性质....③当a=0时,表示什么?结果是什么?当a>0时,表示什么?可不可能为负数?(≥0)是什么样的数呢?例1、当x是怎
4、样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下,其运算结果是怎样的实数?,,练习:1、课本思考2:当x是怎样的实数时,,有意义?1、若,则x和m的取值范围是x_____;m______.2、已知,求的值各是多少?(二)两个运算性质活动5、完成课本探究1活动6、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变.练习:课本例2活动7、完成课本探究2活动8、对中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数.练习:课本例3补充练习:1、化简:
5、,;2、直角三角形的三边分别为a,b,c,其中c为斜边,则式子-与式子有什么关系?三、课堂训练完成课本中两个练习.有时间可补充:1、成立的条件是_______.2、成立的条件是_______.四、小结归纳1、二次根式的概念及“被开方数非负”的条件和“运算结果非负”的性质.2、二次根式的两个运算性质,平方为“父对象”,开方为“子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计可由学生思考后进行讨论,然后教师订正,最后师生共同归纳得出性质1:(≥0)是一个非负数师生共同分析归纳出使二次根式有意义的条
6、件:不是使字母为非负数,而是使被开方数为非负数,且还要考虑二次根式的位置.要求学生会用算术平方根的意义解释.师生共同归纳得出性质2:(≥0)仍要求用算术平方根的意义解释.师生共同归纳出性质3:(≥0)找学生板演,说明解题过程引导学生先观察、分析,解题后养成说明理由的反思习惯.教师巡视指导,收集学生掌握情况,并集中订正.让学生理解二次根式是按形式定义的,并理解二次根式存在的条件和运算结果的非负性.通过例题分析和练习加深对二次根式“运算结果和被开方数双非负”的理解.先具体后抽象,先练习后归纳,一可培养学生数感,二可有利于性质的得出,三可
7、加深对性质的理解.对运算顺序的分析在于弄清两种运算的区别,从而弄清对字母a的要求不同,计算结果也因a而异.补充练习在于强化二次根式的结果具有非负性,也促使学生养成解题先观察的习惯。进一步体会“两个非负”.这里只要求学生知道“什么是代数式”即可,不要求掌握“...必做:P5:1、2、3、4、5、6选做:P6:7、8教师归纳总结,学生边听边作笔记.什么叫代数式”.教学反思...教学时间课题21.2二次根式的乘除(第1课时)课型新授教学媒体多媒体教学目标知识技能1.会运用二次根式乘法法则进行二次根式的乘法运算.2.会利用积的算术平方根性质
8、化简二次根式.过程方法1.经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质.2.通过例题分析和学生练习,达成目标1,2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数
此文档下载收益归作者所有