欢迎来到天天文库
浏览记录
ID:41011012
大小:2.35 MB
页数:70页
时间:2019-08-13
《考研数学核心知识点总结》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、考研数学复习必备考研数学核心知识点总结(包含高数、线代及概率部分)适合基础复习及考前冲刺总结全面到位,重点突出本人花万元报名参加北京一内部考研辅导班,该辅导班考前会发布押题,押题命中率百分之90左右,去年该培训班考生全部高分过线。如果需要发布的押题可以联系我QQ673351717免费索取来者不拒一一发布希望大家都能顺利高分通过2012研考考研数学知识点-高等数学一.函数的概念sinx公式1.lim=11.用变上、下限积分表示的函数x→0xxdynu(1)y=∫f()tdt,其中f()t连续,则=f()x⎛1⎞⎛1⎞0dx公式2.lim
2、⎜1+⎟=e;lim⎜1+⎟=e;n→∞⎝n⎠u→∞⎝u⎠ϕ2()x(2)y=f()tdt,其中ϕ()x,ϕ()x可导,f()t∫ϕ()x1211()lim1+vv=e连续,v→0dy4.用无穷小重要性质和等价无穷小代换则=f[]ϕ()xϕ′()x−f[]ϕ(x)ϕ′()x2211dx5.用泰勒公式(比用等价无穷小更深刻)(数学一和2.两个无穷小的比较数学二)f()xx2xn设limf()x=0,limg()x=0,且lim=l当x→0时,ex=Λ1+x++++0()xng()x!2n!352n+1(1)l=0,称f()x是比g()x
3、高阶的无穷小,记以xx()nx()2n+1sinx=x−++Λ+−1+0x!3!5()2n+!1f()x=0[]g()x,称g()x是比f()x低阶的无穷242nxx()nx()2n小。cosx=Λ1−+−+−1+0x!2!4()2n!(2)l≠0,称f()x与g()x是同阶无穷小。23n()xx()n+1x()nln1+x=x−+−Λ+−1+0x(3)l=1,称f()x与g()x是等价无穷小,记以23nf()x~g()x352n+1xx()n+1x()2n+1arctanx=x−+−Λ+−1+0x352n+13.常见的等价无穷小当x
4、→0时()αα(α−1)2α()α−1Λ[α−(n−1)]nn1+x=1+αx+x+Λ+x+0(x)sinx~x,tanx~x,arcsinx~x,arctanx~x!2n!12x1−cosx~x,e−1~x,ln()1+x~x,26.洛必达法则α0()1+x−1~αx法则1.(型)设(1)limf()x=0,limg()x=00二.求极限的方法(2)x变化过程中,f′()x,g′()x皆存在1.利用极限的四则运算和幂指数运算法则2.两个准则f′()x准则1.单调有界数列极限一定存在(3)lim=A(或∞)g′()x(1)若x≤x(n
5、为正整数)又x≥m(n为正n+1nnf()x则lim=A(或∞)整数),则limx=A存在,且A≥mng()xn→∞(2)若x≥x(n为正整数)又x≤M(n为正f′()xn+1nn(注:如果lim不存在且不是无穷大量情形,则g′()x整数),则limx=A存在,且A≤Mnn→∞f()x不能得出lim不存在且不是无穷大量情形)准则2.(夹逼定理)设g()x≤f()x≤h()xg()x∞若limg()x=A,limh()x=A,则limf()x=A法则2.(型)设(1)limf()x=∞,limg()x=∞∞3.两个重要公式(2)x变化过
6、程中,f′()x,g′()x皆存在1Editedby杨凯钧2005年10月考研数学知识点-高等数学f′()x值,如果对于区间[a,b]上的任一点x,总有f(x)≤M,(3)lim=A(或∞)g′()x则称M为函数f(x)在[a,b]上的最大值。同样可以定义最f()x则lim=A(或∞)小值m。g()x定理3.(介值定理)如果函数f()x在闭区间[a,b]上7.利用导数定义求极限连续,且其最大值和最小值分别为M和m,则对于介于mf()x+∆x−f(x)00基本公式:lim=f′()x[如果0∆x→0∆x和M之间的任何实数c,在[]a,b
7、上至少存在一个ξ,使存在]得8.利用定积分定义求极限f()ξ=cn1⎛k⎞1基本公式lim∑f⎜⎟=∫f()xdx[如果存在]n→∞nk=1⎝n⎠0推论:如果函数f(x)在闭区间[]a,b上连续,且f(a)三.函数的间断点的分类与f(b)异号,则在(a,b)内至少存在一个点ξ,使得函数的间断点分为两类:(1)第一类间断点f()ξ=0设x是函数y=f()x的间断点。如果f()x在间断点0这个推论也称为零点定理五.导数与微分计算x处的左、右极限都存在,则称x是f()x的第一类间断001.导数与微分表点。′()c=0d(c)=0第一类间断点
8、包括可去间断点和跳跃间断点。′(α)α−1αα−1x=αx(α实常数)d(x)=αxdx(α实常数)(2)第二类间断点′()sinx=cosxdsinx=cosxdx第一类间断点以外的其他间断点统称为第二类间断点。′()
此文档下载收益归作者所有