Reynolds_Transport

Reynolds_Transport

ID:40960944

大小:133.31 KB

页数:5页

时间:2019-08-12

Reynolds_Transport_第1页
Reynolds_Transport_第2页
Reynolds_Transport_第3页
Reynolds_Transport_第4页
Reynolds_Transport_第5页
资源描述:

《Reynolds_Transport》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheReynoldsTransportTheoremThequestionarisesastohowagivenquantitychangesΨ,(whereΨ(x,t)issomefluidpropertyperunitvolume)withrespecttotimeasamaterialvolumedeforms.Wedefinethematerialvolumeas:Anarbitrarychosencontrolvolumeoffluidwhosesurfacemovesattheparticlevelocity.Thesignifi

2、canceofthevolumemovingatthesamerateastheparticlevelocityisthatnomassistransportedacrossthechosencontrolsurfacethatenclosesthecontrolvolume.Inaddition,westatebydefinitionthatthematerialcontrolvolumedeformswiththebodymotion.nSm(t)vV(t)mMaterialControlVolumeConsideramaterialvol

3、umeVm(t)withsurfaceareaSm(t).Theunitnormaltothesurfaceisdenotedbyn,andthesurfacevelocityisdenotedbyv.WithinthiscontrolvolumeisapropertyofthecontinuumΨthatisofinterest.WewouldliketodeterminehowΨchangeswithtime.ThetotalamountofΨpresentinthevolumeVm(t)canbeexpressedas:F()t=∫Ψ(x

4、,t)dV(1)Vm(t)Thetimerateofchangeifthefluidpropertyisdefinedas:dFd=∫Ψ(x,t)dV(2)dtdtVm(t)Sincethelimitsofintegrationareafunctionoftime(inourcasethisisthematerialvolumeVm(t)),thetimederivativecannotbetakeninsidetheintegraldirectly.Inordertoovercomethisproblem,wetransformthevolu

5、me,andmaterialpropertyfromaspatialrepresentation,toareference/materialrepresentation..Recallthatanydifferentialvolumeelementattimetisrelatedtothevolumeattinet=0by:dV=JdVowheretheJacobianJisdefinedas:∂x1∂x2∂x3∂X1∂X1∂X1∂x1∂x2∂x3J=detF=givenx=χ(X,t)(3)∂X2∂X2∂X2∂x1∂x2∂x3∂X3∂X3∂X

6、3also,thequantityΨ(x,t)canalwaysbeexpressedintermsofthematerialcoordinatesbyemployingtheresultsx=χ(X,t).Therefore,wecanexpressΨ(x,t)as:Ψ(x,t)=Ψ[χ(X,t),t]≡Ψ(X,t)(4)Thereforewecanexpresstheintegralinequation2intermsofthematerialcoordinates:dFd=∫Ψ(X,t)JdVo(5)dtdtVoSinceVoisinde

7、pendentoftime,theorderofintegrationanddifferentiationcanbeswitched.NotethatsinceXisheldconstant,weareineffecttakingthematerialderivativeoftheintegrand.dFd(ΨX,t)dJdt=∫dtJ+Ψ(X,t)dtdVo(6)XVoXButrecallthatdΨΨD∂Ψ==+v•∇ΨdtXDt∂txdJDJand==J()∇•vdtDtXThereforewecanrea

8、rrangeequation6tohavetheformdF∂Ψ=∫+v•∇∇ΨΨ+()•vJdVo(7)dt∂tVoorintermso

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签