Probability for Finance and Economics chapter2

Probability for Finance and Economics chapter2

ID:40960695

大小:148.59 KB

页数:13页

时间:2019-08-12

Probability for Finance and Economics chapter2_第1页
Probability for Finance and Economics chapter2_第2页
Probability for Finance and Economics chapter2_第3页
Probability for Finance and Economics chapter2_第4页
Probability for Finance and Economics chapter2_第5页
资源描述:

《Probability for Finance and Economics chapter2》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MA313ProbabilityforFinanceandEconomics§2RandomVariablesandExpectationsGrahamBrightwellOctober2005References:GrimmettandStirzaker,ProbabilityandRandomProcesses,Chapters2–4,isgoodforaccuratedescription,butdoesnottreattheexpectationingeneral.AtreatmentveryclosetotheonehereisinChapters3and4ofRosenth

2、al’sAFirstLookatRigorousProbabilityTheory.AnothergoodsourceisWilliams,ProbabilitywithMartingales,Chapters3and6.Youmightalsowanttoreadpp28-42ofBinghamandKiesel,Risk-NeutralValuation:PricingandHedgingofFinancialDerivatives.ThereismoreinthenotesthanIplantocoverinthelectures.Thedefaultpositionisthat

3、anythingnotcoveredinlecturesisnotexaminable.1MeasurablefunctionsWearegoingtorestrictourattentionprettymuchentirelytoreal-valuedfunctions,butinafewplacesitwillpaytoallowourfunctionstotakethevalues+∞and−∞.Weneedtotreatthesesymbolswithcaution,andnotjustasordinarynumbers.LetR∗bethesetR∪{+∞,−∞}.Weare

4、notgoingtoattempttodefineafullarithmeticonR∗,butnaturallyweset+∞>x>−∞foranyrealnumberx.Thenotation[0,∞)meansthesetofnon-negativereals,while[0,∞]=[0,∞)∪{+∞}⊆R∗.Definition1.1.LetFbeaσ-fieldofsubsetsofΩ.Afunctionf:Ω→R∗isF-measurableifallthesets{ω∈Ω:f(ω)≤a},fora∈R∗,areinF.Roughlyspeaking,afunctionfisF-

5、measurableiftheσ-fieldFis“richenough”tocontainalltheimportantinformationaboutthevalueoff.Example1.IfF=P(Ω),everyfunctionfromΩtoR∗isF-measurable.Example2.IfF={∅,Ω},onlytheconstantfunctionsareF-measurable.(Checkthisasanexercise.)Example3.SupposeΩ=[0,1),andF=B,thefamilyofBorelsets.Considerfirstthefun

6、ctionf:Ω→Rdefinedbyf(ω)=ω.Then{ω∈Ω:f(ω)≤a}=[0,a],for0≤a<1,andtheclosedinterval[0,a]isaBorelset.Ifa<0,then{ω∈Ω:f(ω)≤a}=∅,whereasifa≥1,then{ω∈Ω:f(ω)≤a}=[0,1),inbothcasesBorelsets.ThereforefisB-measurable.1Moregenerally,letf:[0,1)→Rbeanycontinuousfunctionand,foranyfixedrealnumbera,considerSa={ω∈Ω:f(ω

7、)>a}.Supposeω0∈Sa,sothatε=f(ω0)−a>0.Sincefiscontinuous,thereissomeδ>0suchthat,wheneverω∈Ωand

8、ω−ω0

9、<δ,wehave

10、f(ω)−f(ω0)

11、<ε,whichimpliesf(ω)>a.Thismeansthattheinterval(ω0−δ,ω0+δ)∩ΩiscontainedinSa.SuchasetS,withthepropertythat,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。