On the Weyl Character Formula for SU(n)

On the Weyl Character Formula for SU(n)

ID:40947568

大小:242.14 KB

页数:6页

时间:2019-08-11

On the Weyl Character Formula for SU(n)_第1页
On the Weyl Character Formula for SU(n)_第2页
On the Weyl Character Formula for SU(n)_第3页
On the Weyl Character Formula for SU(n)_第4页
On the Weyl Character Formula for SU(n)_第5页
资源描述:

《On the Weyl Character Formula for SU(n)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InternationalJournalofTheoreticalPhysics,Vol.15,No.3(1976),pp.201-206OntheWeylCharacterFormulaforSU(n)R.J.PLYMENDepartmentofMathematics,UniversityofManchester,ManchesterM139PL,EnglandReceived:19February1975AbstractInthisNote,wedrawastraightlinebetweenthere

2、presentationtheoryofSU(3)andtheSU(3)-classificationschemesinparticlephysics.OurapproachisbasedonthatofWeyl,butwehaveinmindtheversionswhichappear,"inmoderndress,"inAdamsandBott.Ourformulationbringsanimportantpartofparticlephysicsintolinewithtwocon-temporary

3、accountsofcompactLiegroups.1.TheGroupSU(3)WebeginwithacelebratedformuladuetoWeyl(1950,p.381).LetSU(3)bethegroupofall3x3unitarymatriceswithdeterminant1.LetM(e)=diag(el,e2,ca)beadiagonalmatrixinSU(3).Thuslqi=le21=lea[=1=ele2e3.LetUbeanirreduciblerepresentati

4、onofSU(3)onafinite-dimensionalcomplexvectorspace,andletXbeitscharacter.ThusX(M)=Tr(U(M)),MESU(3).Let~1rG1glter,es,ll=e2re2stefed1wherer,sarepositiveintegers.TheWeylformulafortheirreduciblecharactersXr,sofSU(3)is×,,s(M(e))=ler,d,1I/leZ,e,11r>sItfollowsthatt

5、heirreduciblecharactersaresymmetricpolynomialsinq,e2,ca.Hereisatableoffiveusefulcharacters:(1)Xx,I(M(e))=1(2)Xa,I(M(e))=el+e2+e3©1976PlenumPublishingCorporation.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanym

6、eans,electronic,mechanical,photocopying,microfilming,recording,orotherwise,withoutwrittenpermissionofthepublisher.201202R.J.PLYMEN(3)Xa,2(M(e))=e2e3+e3el+ele2(4)X4,2(M(e))=2+eae22+eael2+ele32+ele22+e2el2+e2e32(5)×s,l(M(e))=l+ela+e2a+%a+eae2Z+eae~2+eaea2+el

7、e22+e2e122-[-e2e3Noweverysymmetricpolynomial(withintegercoefficients)inel,e2,e3isapolynomialintheelementarysymmetricfunctionse~+ez+%,e:%+eae~+ele2,ele2%=1.Thisisthemathematicalbasisoftheclaimthat"thequarksandantiquarksgenerateallSU(3)multiplets."2.TheSubgr

8、oupTThesubgroupTofdiagonalmatricesisclearlycommutative,henceitsirreduciblerepresentationsareone-dimensional.Werecallthataone-dimensionalrepresentationisidenticalwithitscharacter.LetXr,~determinetheirreducible

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。