Gan - Elliptic Curves & Modular Forms

Gan - Elliptic Curves & Modular Forms

ID:40896336

大小:104.59 KB

页数:9页

时间:2019-08-10

Gan - Elliptic Curves & Modular Forms_第1页
Gan - Elliptic Curves & Modular Forms_第2页
Gan - Elliptic Curves & Modular Forms_第3页
Gan - Elliptic Curves & Modular Forms_第4页
Gan - Elliptic Curves & Modular Forms_第5页
资源描述:

《Gan - Elliptic Curves & Modular Forms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ELLIPTICCURVESANDMODULARFORMSWEETECKGANThesearethenotesofagraduatecoursegiveninWinter2005atUCSD.1.AffineAlgebraicGeometryWefirstdiscusssomebasicaffinealgebraicgeometryoveranalgebraicallyclosedfieldk.Later,weshallneedtodescendtoanon-algebraicallyclosedfield.Definition:LetAnbethesetkn.Itisc

2、alledtheaffinen-spaceoverk.ItistheanalogofRnindifferentialgeometryandtheanalogofCnincomplexgeometry.WhatsortofstructurearewegoingtoendowAnwith?Forexample,isAnmerelyaset?WhattypeoffunctionsarewegoingtoconsideronAn?Inalgebraicgeometry,oneworksonlywithpolynomialfunctions,orratherwithrat

3、iosofpolynomialfunctions(theso-calledrationalfunctions).Letk[x1,...,xn]denotethepolynomialringoverkwithnvariables.Clearly,wecanthinkofelementsf∈k[x1,...,xn]asfunctionsAn−→k.OnecandefineatopologyonAn.LetIbeanidealink[x1,...,xn],andletV(I)={x∈An:f(x)=0forallf∈I}.Becausek[x1,...,xn]is

4、noetherian(Hilbert’sbasistheorem),Iisfinitelygenerated,andthusV(I)isthezerosetofafinitenumberofpolynomials.Definition:WegiveAnatopologybydecreeingthatthesetsoftheformV(I)aretheclosedsubsets.ThistopologyiscalledtheZariskitopologyonAn.Examples:InA1,theclosedsubsetsarepreciselytheemptys

5、et,thewholesetA1andfinitesetsofpoints.ObservethatA1iscompact!Exercise:Justifytheabovedefinition,i.e.showthatthecollectionofsubsetsoftheformV(I)containstheemptysetandAn,isclosedunderfiniteunionandisclosedunderarbitraryintersection.Exercise:Showthatanon-emptyopensubsetofAnisdense.Thust

6、heZariskitopologyishighlynon-Hausdorff.IstheZariskitopologyonA2thesameastheproducttopologyofA1×A1?Exercise:Clearly,theelementsofk[x1,...,xn],whenregardedasfunctionsonAn,arecontin-uouswithrespecttotheZariskitopology.ArethecontinuousfunctionsAn−→A1preciselytheelementsofk[x1,...,xn]?1

7、2WEETECKGANItwillbenecessarilytolocalizethenotionoffunctions,soweneedtoconsiderfunctionsdefinedonopensubsetsofAn.Sincek[x1,...,xn]isanintegraldomain,ithasafieldoffractionsk(x1,...,xn).Anelementofthefieldoffractionscanbeexpressedasaquotientf(x1,...,xn)/g(x1,...,xn),whichcanberegardeda

8、safunctiononthesubsetofAnwhereg6=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。