光因照明大功率LED芯片抗过电能力研究

光因照明大功率LED芯片抗过电能力研究

ID:40879565

大小:452.00 KB

页数:16页

时间:2019-08-09

光因照明大功率LED芯片抗过电能力研究_第1页
光因照明大功率LED芯片抗过电能力研究_第2页
光因照明大功率LED芯片抗过电能力研究_第3页
光因照明大功率LED芯片抗过电能力研究_第4页
光因照明大功率LED芯片抗过电能力研究_第5页
资源描述:

《光因照明大功率LED芯片抗过电能力研究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、光因照明大功率LED芯片抗过电能力研究1087   1、引言  LED作为一种新型的照明技术,具有耗能低、寿命长、体积小、可调光、控制灵活和环保等优点,其应用前景举世瞩目。随着LED价格的下降,市场逐渐打开,越来越多的照明产品使用LED作为光源。特别是在道路照明领域,大功率LED产品成为市场的主角,LED在户外照明领域大放异彩[2]。然而,随着LED灯具应用的增加,户外LED灯具受雷击浪涌影响失效的数量也在增加。据调查,在正常使用年限内受损的LED户外灯具大多是因为雷击浪涌产生的过电应力失效了灯具电源及LED光源。这不仅影响灯具的使用寿命,而且增加企业的维护成本。鉴于

2、此,LED户外灯具的抗雷击浪涌能力应引起足够的重视。  LED灯具的抗雷击浪涌能力主要取决于两方面:(1)LED驱动电源的抗雷击浪涌能力及保护机制。(2)LED芯片的抗过电应力能力。对于LED驱动电源,应该以两点判断其抗雷击浪涌能力的好坏:(1)自身元器件的抗雷击浪涌能力,保证电源在雷击浪涌后依旧正常工作。(2)电源对浪涌电流电压波形的衰减能力,保证浪涌经过电源后衰减的峰值电流电压在LED芯片可承受的范围内。天津大学张金建[3]等对LED驱动电源的抗雷击浪涌进行研究,根据雷击浪涌的特性,利用气体放电管、压敏电阻、瞬态抑制二极管等浪涌器件设计了一种适合LED电源的浪涌保

3、护电路,并采用雷击浪涌发生器进行抗扰度实验以测试其抗雷击性能。实验结果表明,能够抗击差模1kV和共模2kV的雷击高压,保证LED电源正常工作。然而,LED驱动电源的抗雷击浪涌要求是由LED芯片的抗过电应力能力决定的。因此,对LED芯片的抗过电应力能力的研究是十分必要的。  基于此,本文针对几种类型不同的大功率LED芯片进行雷击浪涌实验,以探讨不同大功率LED芯片抗过电应力能力,为LED户外灯具的驱动电源与LED芯片的选择,以及抗雷击浪涌浪涌能力的设计研发提供参考,具有重要的实际意义。  2、LED芯片抗过电应力能力的影响因素  首先,LED芯片可承受的电流密度决定其抗

4、过电应力能力,LED芯片能承受的单位横截面积上的电流越大,其抗过电应力能力越强。对于常规电导体电流密度必须足够低,以防止导体熔化或熔断,或者绝缘材料被击穿[4]。在大电流密度下LED芯片内部会发生电迁移现象。导电金属材料在通过较高电流密度时,金属原子会沿着电子运动方向进行迁移扩散。在LED中电迁移使金属原子从一个晶格自由扩散到另一个晶格空位上。以倒装结构芯片为例,当电子流从互连引线流入共晶合金凸点时,由于互连引线到凸点的几何形状产生了突变,因此会在界面上产生电流密度聚集和局部焦耳热效应[5]。电流密度聚集使得凸点和芯片及基板引线里的电流密度分布不均匀,导致电流密度聚集

5、处局部产生了复杂的电迁移力,加速了电迁移的过程,同时加速了LED的失效。  其次,电流聚集效应影响芯片的抗过电应力能力。电流聚集是电流密度在芯片上的不均匀分布,尤其在芯片接触点附近和P-N接点上方。LED芯片的电流聚集现象在芯片上形成局部过热形成热点,加剧电迁移效应使电流密度局部分布不均匀,不均匀的电流密度使得芯片局部温度上升,而温度上升又引起电阻率降低,从而导致局部载流子的俄歇复合增加[6],影响芯片的内量子效率。少数载流子通过异质结的电荷区时发生渗漏,会引起电流的注入效率下降,从而造成LED芯片局部发光不均、过热,影响芯片的发光性能和使用寿命,最终导致LED芯片短

6、路或开路。当芯片尺寸和注入电流较大时,这种现象尤为严重。  最后,LED芯片键合线的载流能力是影响LED芯片抗过电应力能力的一个因素。虽然由于键合线的熔断导致LED失效在实际应用中不常见,但是键合线的直径、长度、键合类型、金属的物理材质性质、电阻性都对金线的载流能力有影响。当过电应力较大时,导体熔断使LED开路。  以上因素共同影响LED芯片的抗过电应力能力。通过不同的芯片技术工艺可以改善芯片的电迁移及电流聚集效应。例如,优化的插指电极可以改善电流拥挤现象;垂直结构芯片使电流在芯片内纵向流动可以改善电流聚集现象。同时倒装芯片的电极和Bump的数目[5]、位置以及欧姆接

7、触的加工制作对于芯片的电流扩展有显著的影响,通过优化电极、Bump的几何及电学参数等可以较大程度的减弱电流拥挤效应,改善电流密度分布的不均匀性,促进电流扩展,降低芯片总的等效电阻。  可见不同结构不同工艺的LED芯片在相同的浪涌脉冲下,抗过电应力的表现不同。下面通过实验找到市场上常见大功率LED芯片的抗单次脉冲电流峰值的范围。  3、不同大功率LED芯片抗单次脉冲电流的实验  为了模拟实际雷击对LED灯具及芯片的影响,采用杭州远方EMS61000-5A[7]智能型雷击浪涌发生器,模拟雷击过程中电网中产生的浪涌波形。  EMS61000-5A的输出波形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。