An Empirical Comparison of Supervised Learning Algorithms

An Empirical Comparison of Supervised Learning Algorithms

ID:40878451

大小:124.37 KB

页数:8页

时间:2019-08-09

An Empirical Comparison of Supervised Learning Algorithms_第1页
An Empirical Comparison of Supervised Learning Algorithms_第2页
An Empirical Comparison of Supervised Learning Algorithms_第3页
An Empirical Comparison of Supervised Learning Algorithms_第4页
An Empirical Comparison of Supervised Learning Algorithms_第5页
资源描述:

《An Empirical Comparison of Supervised Learning Algorithms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、AnEmpiricalComparisonofSupervisedLearningAlgorithmsRichCaruanacaruana@cs.cornell.eduAlexandruNiculescu-Mizilalexn@cs.cornell.eduDepartmentofComputerScience,CornellUniversity,Ithaca,NY14853USAAbstractThispaperpresentsresultsofalarge-scaleempiricalcomp

2、arisonoftensupervisedlearningalgorithmsus-Anumberofsupervisedlearningmethodsingeightperformancecriteria.Weevaluatetheperfor-havebeenintroducedinthelastdecade.Un-manceofSVMs,neuralnets,logisticregression,naivefortunately,thelastcomprehensiveempiri-bay

3、es,memory-basedlearning,randomforests,deci-calevaluationofsupervisedlearningwasthesiontrees,baggedtrees,boostedtrees,andboostedStatlogProjectintheearly90's.Wepresentstumpsonelevenbinaryclassi cationproblemsusingalarge-scaleempiricalcomparisonbetweena

4、varietyofperformancemetrics:accuracy,F-score,tensupervisedlearningmethods:SVMs,Lift,ROCArea,averageprecision,precision/recallneuralnets,logisticregression,naivebayes,break-evenpoint,squarederror,andcross-entropy.memory-basedlearning,randomforests,de-

5、Foreachalgorithmweexaminecommonvariations,cisiontrees,baggedtrees,boostedtrees,andandthoroughlyexplorethespaceofparameters.Forboostedstumps.Wealsoexaminethee ectexample,wecomparetendecisiontreestyles,neuralthatcalibratingthemodelsviaPlattScalingnetso

6、fmanysizes,SVMswithmanykernels,etc.andIsotonicRegressionhasontheirperfor-mance.AnimportantaspectofourstudyisBecausesomeoftheperformancemetricsweexaminetheuseofavarietyofperformancecriteriatointerpretmodelpredictionsasprobabilitiesandmod-evaluatethele

7、arningmethods.elssuchasSVMsarenotdesignedtopredictprobabil-ities,wecomparetheperformanceofeachalgorithmbothbeforeandaftercalibratingitspredictionswith1.IntroductionPlattScalingandIsotonicRegression.Therearefewcomprehensiveempiricalstudiescom-Theempir

8、icalresultsaresurprising.Topreview:priorparinglearningalgorithms.STATLOGisperhapsthetocalibration,baggedtrees,randomforests,andneu-bestknownstudy(Kingetal.,1995).STATLOGwasralnetsgivethebestaverageperformanceacrossallverycomprehensivewhenitwasperform

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。