A study on several machine-learning methods

A study on several machine-learning methods

ID:40878037

大小:570.98 KB

页数:10页

时间:2019-08-09

A study on several machine-learning methods_第1页
A study on several machine-learning methods_第2页
A study on several machine-learning methods_第3页
A study on several machine-learning methods_第4页
A study on several machine-learning methods_第5页
资源描述:

《A study on several machine-learning methods》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONMEDICALIMAGING,VOL.24,NO.3,MARCH2005371AStudyonSeveralMachine-LearningMethodsforClassificationofMalignantandBenignClusteredMicrocalcificationsLiyangWei,StudentMember,IEEE,YongyiYang*,SeniorMember,IEEE,RobertM.Nishikawa,andYuleiJiangAbstract—Inthispaper,weinvestigateseve

2、ralstate-of-the-artmammograms.ClusteredMCscanbeanimportantearlyindi-machine-learningmethodsforautomatedclassificationofclus-catorofbreastcancerinwomen.Theyappearin30%–50%ofteredmicrocalcifications(MCs).Theclassifierispartofacom-mammographicallydiagnosedcases.Forexample,Fig.1showsputer-aid

3、eddiagnosis(CADx)schemethatisaimedtoassistingamammogramwithaclusterofMCs.Thoughcommonlyseenradiologistsinmakingmoreaccuratediagnosesofbreastcanceronmammograms.Themethodsweconsideredwere:supportonmammograms,MCsareoftendifficulttodiagnoseaccuately.vectormachine(SVM),kernelFisherdiscrimina

4、nt(KFD),rele-Thisgreatlycompromisesthequalityofradiologists’biopsyvancevectormachine(RVM),andcommitteemachines(ensemblerecommendations,whichisanimportantissueinbreastcanceraveragingandAdaBoost),ofwhichmosthavebeendevelopedre-diagnosis.Itisreportedthatamongthosewithradiographicallycentl

5、yinstatisticallearningtheory.Weformulateddifferentiationsuspicious,nonpalpablelesionswhoaresentforbiopsy,onlyofmalignantfrombenignMCsasasupervisedlearningproblem,15%–34%arefoundtoactuallyhavemalignancies[1],[2].andappliedtheselearningmethodstodeveloptheclassificationalgorithm.Asinput,th

6、esemethodsusedimagefeaturesautomat-Therehasbeenagreatdealofresearchinrecentyearstode-icallyextractedfromclusteredMCs.Wetestedthesemethodsvelopcomputerizedmethodsthatpotentiallycouldassistradi-usingadatabaseof697clinicalmammogramsfrom386cases,ologistsindifferentiatingbenignfrommalignant

7、MCs.Usingwhichincludedawidespectrumofdifficult-to-classifycases.Weacomputer-aideddiagnosis(CADx)scheme,radiologistscouldanalyzedthedistributionofthecasesinthisdatabaseusingtheincorporatetheoutputfromthecomputerintotheirdecision.multidimensionalscalingtechnique,whichrevealsthatinthefea

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。