欢迎来到天天文库
浏览记录
ID:40848354
大小:617.80 KB
页数:9页
时间:2019-08-08
《Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、PUBLICATIONSOFTHEASTRONOMICALSOCIETYOFTHEPACIFIC,124:1015–1023,2012September©2012.TheAstronomicalSocietyofthePacific.Allrightsreserved.PrintedinU.S.A.PrincipalComponentAnalysiswithNoisyand/orMissingDataSTEPHENBAILEYPhysicsDivision,LawrenceBerkeleyNationalLaboratory,1Cyclo
2、tronRoad,Berkeley,CA,94720Received2012July10;accepted2012August17;published2012September19ABSTRACT.Wepresentamethodforperformingprincipalcomponentanalysis(PCA)onnoisydatasetswithmissingvalues.Estimatesofthemeasurementerrorareusedtoweighttheinputdatasuchthattheresultingeig
3、envectors,whencomparedtoclassicPCA,aremoresensitivetothetrueunderlyingsignalvariationsratherthanbeingpulledbyheteroskedasticmeasurementnoise.Missingdataaresimplylimitingcasesofweight¼0.Theunderlyingalgorithmisanoiseweightedexpectationmaximization(EM)PCA,whichhasadditional
4、benefitsofimplementationspeedandflexibilityforsmoothingeigenvectorstoreducethenoisecontribution.WepresentapplicationsofthismethodonsimulateddataandQSOspectrafromtheSloanDigitalSkySurvey(SDSS).Onlinematerial:colorfigures1.INTRODUCTIONobjectsatdifferentredshifts,andsomewave
5、lengthbinsmaybemaskedduetobrightskylinesorcosmicraycontamination.Principalcomponentanalysis(PCA)isapowerfulandwide-Missingdataareanextremecaseofnoisydata,wheremissinglyusedtechniquetoanalyzedatabyformingacustomsetofdataareequivalenttodatawithinfinitemeasurementvariance.“p
6、rincipalcomponent”eigenvectorsthatareoptimizedtode-ThisworkdescribesaPCAframeworkwhichincorporatesscribethemostdatavariancewiththefewestnumberofcom-estimatesofmeasurementvariancewhilesolvingfortheprin-ponents(Pearson1901;Hotelling1933;Jolliffe2002).Withthecipalcomponents.
7、Thisoptimizestheeigenvectorstodescribefullsetofeigenvectors,thedatamaybereproducedexactly;i.e.,thetrueunderlyingsignalvariationswithoutbeingundulyaf-PCAisatransformationthatcanlendinsightbyidentifyingfectedbyknownmeasurementnoise.Codewhichimplementswhichvariationsinacompl
8、exdatasetaremostsignificantandthisalgorithmisavailableathttps://github.com/sbailey/empca.howthey
此文档下载收益归作者所有