Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析

Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析

ID:40848354

大小:617.80 KB

页数:9页

时间:2019-08-08

Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析_第1页
Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析_第2页
Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析_第3页
Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析_第4页
Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析_第5页
资源描述:

《Principal Component Analysis with Noisy andor Missing Data带有噪声和_或缺失数据的主成分分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、PUBLICATIONSOFTHEASTRONOMICALSOCIETYOFTHEPACIFIC,124:1015–1023,2012September©2012.TheAstronomicalSocietyofthePacific.Allrightsreserved.PrintedinU.S.A.PrincipalComponentAnalysiswithNoisyand/orMissingDataSTEPHENBAILEYPhysicsDivision,LawrenceBerkeleyNationalLaboratory,1Cyclo

2、tronRoad,Berkeley,CA,94720Received2012July10;accepted2012August17;published2012September19ABSTRACT.Wepresentamethodforperformingprincipalcomponentanalysis(PCA)onnoisydatasetswithmissingvalues.Estimatesofthemeasurementerrorareusedtoweighttheinputdatasuchthattheresultingeig

3、envectors,whencomparedtoclassicPCA,aremoresensitivetothetrueunderlyingsignalvariationsratherthanbeingpulledbyheteroskedasticmeasurementnoise.Missingdataaresimplylimitingcasesofweight¼0.Theunderlyingalgorithmisanoiseweightedexpectationmaximization(EM)PCA,whichhasadditional

4、benefitsofimplementationspeedandflexibilityforsmoothingeigenvectorstoreducethenoisecontribution.WepresentapplicationsofthismethodonsimulateddataandQSOspectrafromtheSloanDigitalSkySurvey(SDSS).Onlinematerial:colorfigures1.INTRODUCTIONobjectsatdifferentredshifts,andsomewave

5、lengthbinsmaybemaskedduetobrightskylinesorcosmicraycontamination.Principalcomponentanalysis(PCA)isapowerfulandwide-Missingdataareanextremecaseofnoisydata,wheremissinglyusedtechniquetoanalyzedatabyformingacustomsetofdataareequivalenttodatawithinfinitemeasurementvariance.“p

6、rincipalcomponent”eigenvectorsthatareoptimizedtode-ThisworkdescribesaPCAframeworkwhichincorporatesscribethemostdatavariancewiththefewestnumberofcom-estimatesofmeasurementvariancewhilesolvingfortheprin-ponents(Pearson1901;Hotelling1933;Jolliffe2002).Withthecipalcomponents.

7、Thisoptimizestheeigenvectorstodescribefullsetofeigenvectors,thedatamaybereproducedexactly;i.e.,thetrueunderlyingsignalvariationswithoutbeingundulyaf-PCAisatransformationthatcanlendinsightbyidentifyingfectedbyknownmeasurementnoise.Codewhichimplementswhichvariationsinacompl

8、exdatasetaremostsignificantandthisalgorithmisavailableathttps://github.com/sbailey/empca.howthey

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。