Greedy Learning of Binary Latent Trees二叉隐树的贪心学习

Greedy Learning of Binary Latent Trees二叉隐树的贪心学习

ID:40847942

大小:450.37 KB

页数:14页

时间:2019-08-08

Greedy Learning of Binary Latent Trees二叉隐树的贪心学习_第1页
Greedy Learning of Binary Latent Trees二叉隐树的贪心学习_第2页
Greedy Learning of Binary Latent Trees二叉隐树的贪心学习_第3页
Greedy Learning of Binary Latent Trees二叉隐树的贪心学习_第4页
Greedy Learning of Binary Latent Trees二叉隐树的贪心学习_第5页
资源描述:

《Greedy Learning of Binary Latent Trees二叉隐树的贪心学习》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1GreedyLearningofBinaryLatentTreesStefanHarmelingandChristopherK.I.WilliamsFAbstract—Inferringlatentstructuresfromobservationshelpstomodelvariablesareconditionallyindependentgiventhelatentandpossiblyalsounderstandunderlyingdatageneratingprocesses.Avariable2.Thismodelcanreadi

2、lybefittedtodatausingrichclassoflatentstructuresarethelatenttrees,i.e.tree-structuredtheEMalgorithm.However,ithasstrongassumptionsdistributionsinvolvinglatentvariableswherethevisiblevariablesareofconditionalindependencethatingeneralwillnotbeleaves.Thesearealsocalledhierarchic

3、allatentclass(HLC)models.justified.Zhang(2004)proposedasearchalgorithmforlearningsuchmodelsinthespiritofBayesiannetworkstructurelearning.WhilesuchanThesestrongassumptionscanberelaxedbyproposingapproachcanfindgoodsolutionsitcanbecomputationallyexpensive.aricher,tree-structuredl

4、atentvariablemodelaspro-Asanalternativeweinvestigatetwogreedyprocedures:theBIN-GposedforexampleinZhang(2004).FollowingZhangalgorithmdeterminesboththestructureofthetreeandthecardinalitywecallthisahierarchicallatentclass(HLC)model.Theofthelatentvariablesinabottom-upfashion.The

5、BIN-Aalgorithmfirstnetworkstructureisarootedtreeandtheleavesofthedeterminesthetreestructureusingagglomerativehierarchicalcluster-treearethevisiblevariables.Anattractionofalatenttreeing,andthendeterminesthecardinalityofthelatentvariablesasforstructure(comparedtomorecomplexDAGs

6、)isthatitBIN-G.WeshowthatevenwithrestrictingourselvestobinarytreesweobtainHLCmodelsofcomparablequalitytoZhang’ssolutions(inallowslineartimeinference(Pearl,1988).Furthermore,termsofcross-validatedlog-likelihood),whilebeinggenerallyfastertosuchalatentstructurereflectsahierarchi

7、calgroupingcompute.Thisclaimisvalidatedbyacomprehensivecomparisononofthevisiblevariables,makingHLCmodelsoftenin-severaldatasets.Furthermore,wedemonstratethatourmethodsareterpretableandgivinginsightsintothedatageneratingabletoestimateinterpretablelatentstructuresonreal-worldd

8、atawithprocesses.Weemphasizethedifferencebetweenthealargenumberofvariables.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。