Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督

Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督

ID:40847449

大小:277.19 KB

页数:12页

时间:2019-08-08

Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督_第1页
Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督_第2页
Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督_第3页
Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督_第4页
Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督_第5页
资源描述:

《Active Semi-Supervision for Pairwise Constrained Clustering成对约束聚类的主动半监督》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ProceedingsoftheSIAMInternationalConferenceonDataMining,(SDM-2004),pp.333-344,LakeBuenaVista,FL,April,2004ActiveSemi-SupervisionforPairwiseConstrainedClusteringSugatoBasuArindamBanerjeeRaymondJ.MooneyComputerSciences,ElectricalandComputerEng.,ComputerSciences,Univ.ofTexasatAustin,Univ.ofTexasa

2、tAustin,Univ.ofTexasatAustin,Austin,TX78712Austin,TX78712Austin,TX78712sugato@cs.utexas.eduabanerje@ece.utexas.edumooney@cs.utexas.eduAbstractprovidingclasslabels,sincetruelabelsmaybeunknownSemi-supervisedclusteringusesasmallamountofsuper-apriori,whileitcanbeeasiertospecifywhetherpairsofvisedd

3、atatoaidunsupervisedlearning.Onetypicalap-pointsbelongtothesameclusterordifferentclusters.proachspecifiesalimitednumberofmust-linkandcannot-Weproposeacostfunctionforpairwiseconstrainedlinkconstraintsbetweenpairsofexamples.Thispaperclustering(PCC)thatcanbeshowntobetheconfigurationpresentsapairwis

4、econstrainedclusteringframeworkandaenergyofaHiddenMarkovRandomField(HMRF)overnewmethodforactivelyselectinginformativepairwisecon-thedatawithawell-definedpotentialfunctionandnoisestraintstogetimprovedclusteringperformance.Theclus-model.Then,thepairwise-constrainedclusteringproblemteringandactive

5、learningmethodsarebotheasilyscalablebecomesequivalenttofindingtheHMRFconfigurationwithtolargedatasets,andcanhandleveryhighdimensionaldata.thehighestposteriorprobability,i.e.,minimizingitsenergy.ExperimentalandtheoreticalresultsconfirmthatthisactiveWepresentanalgorithmforsolvingthisproblem.queryin

6、gofpairwiseconstraintssignificantlyimprovestheFurther,inordertomaximizetheutilityofthelimitedaccuracyofclusteringwhengivenarelativelysmallamountsuperviseddataavailableinasemi-supervisedsetting,super-ofsupervision.visedtrainingexamplesshouldbeactivelyselectedasmaxi-mallyinformativeonesratherthan

7、chosenatrandom,ifpos-1Introductionsible[27].Inthatcase,fewerconstraintswillberequiredtosignificantlyimprovetheclusteringaccuracy.Tothisend,Inmanydataminingandmachinelearningtasks,thereisawepresentanewmethodforactivelyselectinggoodpair-la

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。