欢迎来到天天文库
浏览记录
ID:40843335
大小:372.49 KB
页数:42页
时间:2019-08-08
《Basics of Stochastic Calculus随机微积分基础》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、Chapter2BasicsofStochasticCalculusLet.˝;F;F;P/beafilteredprobabilityspace.Weremarkagainthat,unlikeinstandardliterature,wedonotassumeFDfFtg0tTsatisfytheusualhypothesis.ThiswillbecrucialforthefullynonlineartheoryinPartIII,andforfixedPthisisaverymildrelaxationduetoPr
2、oposition1.2.1.2.1BrownianMotion2.1.1DefinitionDefinition2.1.1WesayaprocessBWŒ0;T˝!Risa(standard)BrownianmotionifB0D0,a.s.Forany0Dt0<3、tT,Bs;tandFsareindependent.WenotethatasinthepreviouschapterwerestrictBtoafinitehorizonŒ0;T.ButthedefinitioncanbeeasilyextendedtoŒ0;1/,byfirstextendingthefiltrationFtoŒ0;1/.Whennecessary,wemayinterpretBasaBrownianmotiononŒ0;1/withoutmentioningitexplicitly.Moreover,wh4、enthereisaneedtoemphasizethedependenceontheprobabilitymeasurePand/orthefiltrationF,wecallBaP-Brownianmotionor.P;F/-Brownianmotion.SinceBhasindependentincrements,©SpringerScience+BusinessMediaLLC201721J.Zhang,BackwardStochasticDifferentialEquations,ProbabilityTheory5、andStochasticModelling86,DOI10.1007/978-1-4939-7256-2_2222BasicsofStochasticCalculusclearly.Bt1;;Btn/haveGaussiandistribution,orsayBisaGaussianprocess.Moreover,fromthedefinitionwecaneasilycomputethefinitedistributionofB.ThenbytheKolmogorovsExtensionTheoremweknowt6、hatBrownianmotiondoesexist.Thefollowingpropertiesareimmediateandlefttothereaders.Proposition2.1.2LetBbeastandardBrownianmotion.Foranyt0andanyt0c1constantc>0,theprocessesBtWDBt0;tCt0andBOtWDpcBctarealsostandardBrownianmotions.Proposition2.1.3ABrownianmotionisMarkov7、,andanF-BrownianmotionisanF-martingale.Inthemultidimensionalcase,wecallBD.B1;;Bd/>ad-dimensionalBrownianmotionifB1;;BdareindependentBrownianmotions.InmostcaseswedonotemphasizethedimensionandthusstillcallitaBrownianmotion.Fromnowon,throughoutthischapter,Bisad8、-dimensionalF-Brownianmotion.Allourresultsholdtrueinmultidimensionalsetting.However,whileweshallstatetheresultsinmultidimensionalcase,fornotionalsimplic
3、tT,Bs;tandFsareindependent.WenotethatasinthepreviouschapterwerestrictBtoafinitehorizonŒ0;T.ButthedefinitioncanbeeasilyextendedtoŒ0;1/,byfirstextendingthefiltrationFtoŒ0;1/.Whennecessary,wemayinterpretBasaBrownianmotiononŒ0;1/withoutmentioningitexplicitly.Moreover,wh
4、enthereisaneedtoemphasizethedependenceontheprobabilitymeasurePand/orthefiltrationF,wecallBaP-Brownianmotionor.P;F/-Brownianmotion.SinceBhasindependentincrements,©SpringerScience+BusinessMediaLLC201721J.Zhang,BackwardStochasticDifferentialEquations,ProbabilityTheory
5、andStochasticModelling86,DOI10.1007/978-1-4939-7256-2_2222BasicsofStochasticCalculusclearly.Bt1;;Btn/haveGaussiandistribution,orsayBisaGaussianprocess.Moreover,fromthedefinitionwecaneasilycomputethefinitedistributionofB.ThenbytheKolmogorovsExtensionTheoremweknowt
6、hatBrownianmotiondoesexist.Thefollowingpropertiesareimmediateandlefttothereaders.Proposition2.1.2LetBbeastandardBrownianmotion.Foranyt0andanyt0c1constantc>0,theprocessesBtWDBt0;tCt0andBOtWDpcBctarealsostandardBrownianmotions.Proposition2.1.3ABrownianmotionisMarkov
7、,andanF-BrownianmotionisanF-martingale.Inthemultidimensionalcase,wecallBD.B1;;Bd/>ad-dimensionalBrownianmotionifB1;;BdareindependentBrownianmotions.InmostcaseswedonotemphasizethedimensionandthusstillcallitaBrownianmotion.Fromnowon,throughoutthischapter,Bisad
8、-dimensionalF-Brownianmotion.Allourresultsholdtrueinmultidimensionalsetting.However,whileweshallstatetheresultsinmultidimensionalcase,fornotionalsimplic
此文档下载收益归作者所有