欢迎来到天天文库
浏览记录
ID:40818112
大小:84.00 KB
页数:7页
时间:2019-08-08
《华人数学家独领风骚(三)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、华人数学家独领风骚(三)【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。周炜良1911年10月1日生于上海.代数几何.周炜良的父亲周达(美权)是清末民初著名数学家、集邮家,家境比较富裕.周炜良幼年在上海生长,从未进过学校.5岁开始学中文,11岁学英文,都由家庭教师讲授.20年代上海的大中学校颇多使用美国的原文课本,周炜良即自学各种知识:从数学到物理,从历史到经济.1924年,周炜良恳求父亲送他到美国读书,先在肯塔基州的阿斯伯里学院补习,后来进入肯塔基大学.那时的主要兴趣在政治经济.直到1929年10月进入
2、芝加哥大学时,仍然主修经济学.可是此后两年内发生了变化.1931年夏天,一位在芝加哥大学得到博士学位后又去普林斯顿工作一年的中国数学家,劝周炜良到普林斯顿去,或者去德国的格丁根大学——那时的世界数学中心.于是在1932年10月,周炜良带着研究数学的模糊想法去了格丁根.补了半年的德文后,希特勒法西斯上台,格丁根衰落了.周炜良在芝加哥时曾读过B.L.范·德·瓦尔登(VanderWaerden)写的《代数学》(Algebra),十分欣赏,于是转到莱比锡大学随范·德·瓦尔登研究代数几何,这是1933年夏天的事.次年夏天,周炜良到汉堡渡暑假,遇到维克特(MargotVictor)小姐,成
3、为好友.周炜良滞留汉堡大学,随数学家E.阿丁(Artin)听课.直至1936年初才回到莱比锡,在范·德·瓦尔登指导下完成博士论文,并和维克特完婚.婚礼上,正在汉堡大学留学的陈省身是唯一的中国宾客.周炜良成家立业之后,遂返回上海,在南京的中央大学任数学教授.一年后,抗日战争爆发,不得已留在上海.周炜良的岳父在德国曾有很好的工作,由于希特勒的种族迫害而流亡上海,几乎身无分文.这时的周炜良必须自立挣钱,供养太太、两个孩子,以及岳父母.抗日战争胜利后,周炜良计划经营进出口贸易.大约在1946年春天,陈省身从美国返回上海.他力劝周炜良重返数学研究,并留下许多战时发表的论文,特别是O.扎里
4、斯基(Zariski)和A.韦伊(Weil)的论文预引本.周炜良虽然离开数学已近10年之久,但他终于作出了他一生中最重要的决定:回到数学领域.由于陈省身写信给普林斯顿的S.莱夫谢茨(Lefschetz)作了推荐,周炜良在上海同济大学短期任教之后,便于1947年春天到达普林斯顿.他在那里做了一些相当好的工作.次年,范·德·瓦尔登访问位于美国马里兰州的约翰·霍普金斯大学,周炜良去看他,恰好该校有一个教职的空缺,周炜良遂应聘到那里就任副教授.1950年升任正教授.当年,战后首次恢复的国际数学家大会在美国举行,周炜良作为该校的正式代表与会,会后曾在哈佛大学短期讲学.1955年再度去普林
5、斯顿进行访问研究,返回霍普金斯大学之后就任数学系主任,前后达11年之久(1955—1966).1959年,他当选为台北中央研究院院士.1977年,周炜良退休,成为霍普金斯大学的荣退教授.周炜良把毕生精力奉献给代数几何的研究,成为20世纪代数几何学领域的主要人物之一,以周炜良名字命名的数学名词,仅在日本《岩波数学词典》里就收有7个.回顾20世纪中国数学的历史,能在世界数坛上留下痕迹的华人数学家并不多,周炜良是其中杰出的一位.代数几何学是解析几何的深入和发展.正如二元二次代数方程。x2+y2=r2的解集(x,y)可以表示半径为r的圆,代数几何的研究对象仍是高次多元代数方程或代数方程
6、组的解集,即系数在某域k内的n元多项式F1,F2,…,Fn所形成的代数方程组F1(x1,…,xn)=0,F2(x1,…,xn)=0,…,Fn(x1,…,xn)=0的位于域k内的公共解集合V,我们称之为代数簇(algebraicvariety),最简单的代数簇就是平面曲线.椭圆函数、椭圆积分、阿贝尔(Abel)积分等都与平面曲线有关,复变量的代数函数论及黎曼曲面论进一步推动了现代代数几何学的发展.19世纪下半叶,德国的R.克莱布施(Clebsch)、J.普吕克(Plcker)、M.诺特(Noether)以及意大利学派曾做出很大贡献.经过J.H.庞加莱(Poincar)、C.E.皮
7、卡(Picard)、J.W.R.戴德金(Dedekind)和A.凯莱(Cayley)的发展,到20世纪20—30年代,E.诺特(Noether)、E.阿廷(Artin)和他们的学生范·德·瓦尔登创立了抽象代数学,为代数几何学的研究注入了新的活力.周炜良的代数几何学研究正是在这样的背景下开始的.周炜良坐标1937年,周炜良最初的两篇论文发表在德国《数学年刊》(MathematischeAnnalen)上.第一篇是与范·德·瓦尔登合作的,第二篇则是周炜良的博士论文.这两篇文章继承了凯莱和普吕克的
此文档下载收益归作者所有