算法设计与分析课程设计资料

算法设计与分析课程设计资料

ID:40758205

大小:125.93 KB

页数:6页

时间:2019-08-07

算法设计与分析课程设计资料_第1页
算法设计与分析课程设计资料_第2页
算法设计与分析课程设计资料_第3页
算法设计与分析课程设计资料_第4页
算法设计与分析课程设计资料_第5页
资源描述:

《算法设计与分析课程设计资料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、算法设计与分析课程设计一、课程题目零钱问题贪心算法实现二、课程摘要1)题目描述使用贪心算法设计思想设计算法实现找零钱问题。例题13-4一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为25美分、10美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。1)在给定钱币面值的前提下,实现找回尽量少硬币的输出方案2)分析算法性能2)贪心算法简述在

2、求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及

3、其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。三、课程引言首先,证明找零钱问题的贪婪算法总能产生具有最少硬币数的零钱。证明:(1)找零钱问题的最优解必以一个贪心选择开始,当总金额为N,硬币面值为25,10,5,1时。设最大容许的硬币面值为m,最优解必包含一个面值为m的硬币:设A是一个最优解,且A中的第i个硬币面值为f(i)。当f(1)=m(此处为25),得证;若f(1)

4、(n>1)之和

5、在于,现在我们需要求一个最少的硬币数而不是最大值。但是选择的情况也是相同的,即每次选择都可以选择任何一种硬币。首先,找零钱问题具有最优子结构性质:兑换零钱问题的最优子结构表述:对于任意需要找的钱数j,一个利用T[n]中的n个不同面值钱币进行兑换零钱的最佳方案为P(T(1),j),P(T(2),j),...,P(T(n),j),即此时的最少钱币个数,则P(T(2),j),...,P(T(n),j)一定是利用T[n]中n个不同的面值钱币对钱数j=j-P(T(1),j)*T(1)进行兑换零钱的最佳方案。其次,找零钱问题具有重叠于问题性质:a)当n=1时,即只能用一种钱币兑换零钱,钱币的面值为T[0

6、],有b)当n>1时,若j>T[n],即第n种钱币面值比所兑换零钱数小,因此有。当k为时,C(n,j)达到最小值,有P(T(k0),j)=P(T(),j-T())+1若j=T[n],即用n种钱币兑换零钱,第n种钱币面值与兑换零钱数j相等,此时有C(n,j)=C(n,T[n])=1;若j

7、取决于程序的两个循环,所以算法的时间复杂度为;算法执行过程中引入了一个二维数组,随着输入规模的增大,所需要的空间复杂度为:考虑例13-4的找零钱问题,假设售货员只有有限的25美分,10美分,5美分和1美分的硬币,给出一种找零钱的贪婪算法。这种方法总能找出具有最少硬币数的零钱吗?证明结论。源代码如下:#includeusingnamespacestd;constintC=33;constin

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。