空间向量运算的坐标表示(上课

空间向量运算的坐标表示(上课

ID:40724163

大小:710.60 KB

页数:26页

时间:2019-08-06

空间向量运算的坐标表示(上课_第1页
空间向量运算的坐标表示(上课_第2页
空间向量运算的坐标表示(上课_第3页
空间向量运算的坐标表示(上课_第4页
空间向量运算的坐标表示(上课_第5页
资源描述:

《空间向量运算的坐标表示(上课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.1.4空间向量的正交分解及其坐标表示共线向量定理:复习:共面向量定理:平面向量基本定理:平面向量的正交分解及坐标表示xyo问题:我们知道,平面内的任意一个向量都可以用两个不共线的向量来表示(平面向量基本定理)。对于空间任意一个向量,有没有类似的结论呢?xyzOQP由此可知,如果是空间两两垂直的向量,那么,对空间任一向量,存在一个有序实数组{x,y,z}使得我们称为向量在上的分向量。探究:在空间中,如果用任意三个不共面向量代替两两垂直的向量,你能得出类似的结论吗?任意不共面的三个向量都可做为空间的一个基底。空间向量基本定理:如

2、果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使都叫做基向量(1)任意不共面的三个向量都可做为空间的一个基底。特别提示:对于基底{a,b,c},除了应知道a,b,c不共面,还应明确:(2)由于可视为与任意一个非零向量共线,与任意两个非零向量共面,所以三个向量不共面,就隐含着它们都不是。(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关连的不同概念。推论:设O、A、B、C是不共线的四点,则对空间任一点P,都存在唯一的有序实数组{x,y,z},使当且仅当x+y+z=1时,P、A、B

3、、C四点共面。一、空间直角坐标系单位正交基底:如果空间的一个基底的三个基向量互相垂直,且长都为1,则这个基底叫做单位正交基底,常用e1,e2,e3表示空间直角坐标系:在空间选定一点O和一个单位正交基底e1,e2,e3,以点O为原点,分别以e1,e2,e3的正方向建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这样就建立了一个空间直角坐标系O--xyz点O叫做原点,向量e1,e2,e3都叫做坐标向量.通过每两个坐标轴的平面叫做坐标平面。给定一个空间坐标系和向量,且设e1,e2,e3为坐标向量,由空间向量基本定理,存在唯一的有序实

4、数组(x,y,z)使p=xe1+ye2+ze3有序数组(x,y,z)叫做p在空间直角坐标系O--xyz中的坐标,记作.P=(x,y,z)二、空间向量的直角坐标系xyzOe1e2e3在空间直角坐标系O--xyz中,对空间任一点,A,对应一个向量OA,于是存在唯一的有序实数组x,y,z,使OA=xe1+ye2+ze3在单位正交基底e1,e2,e3中与向量OA对应的有序实数组(x,y,z),叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.xyzOA(x,y,z)

5、e1e2e3练习:1、在空间坐标系o-xyz中,(分别是与x轴、y轴、z轴的正方向相同的单位向量)则的坐标为,点B的坐标为。2、点M(2,-3,-4)在坐标平面xoy、xoz、yoz内的正投影的坐标分别为,关于原点的对称点为,关于x轴的对称点为,例题已知空间四边形OABC,其对角线为OB,AC,M,N,分别是对边OA,BC的中点,点P,Q是线段MN三等分点,用基向量OA,OB,OC表示向量OP,OQ.BOACPNMQ1、已知向量{a,b,c}是空间的一个基底.求证:向量a+b,a-b,c能构成空间的一个基底.练习练习2空间向量运

6、算的坐标表示ABDCOE一、复习:平面向量的坐标运算空间向量类似于平面向量可以用坐标表示,而且也类似于平面向量可以用坐标来进行各种运算及进行有关判断.二、向量的直角坐标运算.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标.设A(x1,y1,z1),B(x2,y2,z2),则M=(x,y,z),若M是线段AB的中点,二、向量的直角坐标运算.练习1.已知求2.求下列两点之间的距离:(1)A(1,2,0),B(2,4,3);(2)C(-3,1,5),D(0,-2,3).3.求下列向量的夹角的余弦:例.

7、正方体ABCD-A1B1C1D1中,E,F,G分别为AB,BC,CC1的中点,求EF与BG所成角的余弦值.【注意】求出的余弦值如果是个正数就为本题的结果,如是个负数则要取它的相反数作为本题的结果.HEFGD1C1B1ABCDA1解:设正方体的棱长为4,则xzyEFGD1C1B1ABCDA1思路二:利用空间向量的知识,转化为求EF和BG的夹角,进一步转化为求它们的数量积和长度.解:不妨设正方体的棱长为1,分别以为单位正交基底建立空间直角坐标系Dxyz.则E(1,0.5,0),F(0.5,1,0),B(1,1,0),G(0,1,0.

8、5).解:设正方体的棱长为1,建立空间直角坐标Oxyz,例1.如图,在正方体       中,求BE1与DF1所成的角的余弦值.DABC1.基本知识:(1)向量的长度公式与两点间的距离公式;(2)两个向量的夹角公式.2.思想方法:用向量计算或证明几何问题时,可以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。