Markov chain Monte Carlo in action- a tutorial

Markov chain Monte Carlo in action- a tutorial

ID:40720829

大小:134.56 KB

页数:4页

时间:2019-08-06

Markov chain Monte Carlo in action- a tutorial_第1页
Markov chain Monte Carlo in action- a tutorial_第2页
Markov chain Monte Carlo in action- a tutorial_第3页
Markov chain Monte Carlo in action- a tutorial_第4页
资源描述:

《Markov chain Monte Carlo in action- a tutorial》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MarkovchainMonteCarloinaction:atutorialPeterJ.GreenUniversityofBristol,DepartmentofMathematics,Bristol,BS81TW,UK.P.J.Green@bristol.ac.uk1.IntroductionMarkovchainMonteCarloisprobablyabout50yearsold,andhasbeenbothdevelopedandextensivelyusedinphysicsforthelastfourdecades.However,themostspectacularinc

2、reaseinitsimpactandin uenceinstatisticsandprobabilityhascomesincethelate'80's.Ithasnowcometobeanall-pervadingtechniqueinstatisticalcomputation,inparticularforBayesianinference,andespeciallyincomplexstochasticsystems.2.Cyclonesexample:pointprocessesandchangepointsWewillillustratetheideasofMCMCwitha

3、runningexample:theobservationsareapointprocessofeventsattimesy;y;:::;yinaninterval[0;L).Wesupposetheeventsoccurasa12NPoissonprocess

4、butatapossiblynon-uniformrate:sayx(t)perunittime,attimet;wewishtomakeinferenceaboutx(t).Weconsideraseriesofmodels,ultimatelyallowinganunknownnumberofchangepoints,unkn

5、ownhyperparameters,andaparametricperiodiccomponent.ThemodelsandtherespectivealgorithmsandinferenceswillbeillustratedbyananalysisofadatasetofthetimesofcycloneshittingtheBayofBengal;therewere141cyclonesoveraperiodof100years.Model1:constantrate.Firstsupposethatx(t)xforallt.Thenthetimesoftheeventsare

6、immaterial:weobserveNeventsinatimeintervaloflengthL;theobviousestimateofxNbisx=,themaximumlikelihoodestimatorofxundertheassumptionthatNhasaPoissonLdistribution,withmeanxL.Model2:constantrate,theBayesianway.ForaBayesianapproachtothisexample,supposethatwehavepriorinformationaboutx(frompreviousstudie

7、s,forexample).Supposewecanmodelthisbyx,( ;):Thenwe ndthataposteriorixhasaGammadistributionwithmean(+N)=(+L),orapproximatelyN=LifNandLarelargecomparedwithand.Thuswithalotofdata,theBayesianposteriormeanisclosetothemaximumlikelihoodestimator.ThereisnoneedforMCMCinthismodel:youcancalculatetheposterio

8、rexactly,andrecogniseitasastandarddistribution;itonlyworkedlikethisbecauseweusedaconjugateprior.Model3:constantrate,withhyperparameter.Supposeyouarereluctanttospecifyyourpriorfully:youarehappytosayx,( ;)andcansp

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。