Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration

Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration

ID:40715686

大小:380.06 KB

页数:10页

时间:2019-08-06

Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration_第1页
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration_第2页
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration_第3页
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration_第4页
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration_第5页
资源描述:

《Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FASTAPPROXIMATENEARESTNEIGHBORSWITHAUTOMATICALGORITHMCONFIGURATIONMariusMuja,DavidG.LoweComputerScienceDepartment,UniversityofBritishColumbia,Vancouver,B.C.,Canadamariusm@cs.ubc.ca,lowe@cs.ubc.caKeywords:nearest-neighborssearch,randomizedkd-trees,hierarchicalk-meanstree,clustering

2、.Abstract:Formanycomputervisionproblems,themosttimeconsumingcomponentconsistsofnearestneighbormatch-inginhigh-dimensionalspaces.Therearenoknownexactalgorithmsforsolvingthesehigh-dimensionalproblemsthatarefasterthanlinearsearch.Approximatealgorithmsareknowntoprovidelargespeedupswit

3、honlyminorlossinaccuracy,butmanysuchalgorithmshavebeenpublishedwithonlyminimalguidanceonselectinganalgorithmanditsparametersforanygivenproblem.Inthispaper,wedescribeasystemthatanswersthequestion,“Whatisthefastestapproximatenearest-neighboralgorithmformydata?”Oursystemwilltakeanygi

4、vendatasetanddesireddegreeofprecisionandusethesetoautomaticallydeterminethebestalgorithmandparametervalues.Wealsodescribeanewalgorithmthatappliesprioritysearchonhierarchicalk-meanstrees,whichwehavefoundtoprovidethebestknownperformanceonmanydatasets.Aftertestingarangeofalternatives

5、,wehavefoundthatmultiplerandomizedk-dtreesprovidethebestperformanceforotherdatasets.Wearereleasingpublicdomaincodethatimplementstheseapproaches.Thislibraryprovidesaboutoneorderofmagnitudeimprovementinquerytimeoverthebestpreviouslyavailablesoftwareandprovidesfullyautomatedparameter

6、selection.1INTRODUCTIONformedefficiently.Inthispaper,wewillassumethatXisanEuclideanvectorspace,whichisappropriateformostproblemsincomputervision.Wewillde-Themostcomputationallyexpensivepartofmanyscribepotentialextensionsofourapproachtogeneralcomputervisionalgorithmsconsistsofsearch

7、ingformetricspaces,althoughthiswouldcomeatsomecosttheclosestmatchestohigh-dimensionalvectors.Ex-inefficiency.amplesofsuchproblemsincludefindingthebestmatchesforlocalimagefeaturesinlargedatasetsForhigh-dimensionalspaces,thereareoftenno(Lowe,2004;Philbinetal.,2007),clusteringlocalknow

8、nalgorithmsfornearestneighborsear

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。