[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection

[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection

ID:40702306

大小:609.27 KB

页数:14页

时间:2019-08-06

[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection_第1页
[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection_第2页
[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection_第3页
[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection_第4页
[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection_第5页
资源描述:

《[ECCV 2010] Clustering Complex Data with Group-Dependent Feature Selection》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ClusteringComplexDatawithGroup-DependentFeatureSelectionYen-YuLin1,2,Tyng-LuhLiu1,andChiou-ShannFuh21InstituteofInformationScience,AcademiaSinica,Taipei,Taiwan2DepartmentofCSIE,NationalTaiwanUniversity,Taipei,Taiwan{yylin,liutyng}@iis.sinica.edu.tw,fuh@csi

2、e.ntu.edu.twAbstract.Wedescribeaclusteringapproachwiththeemphasisonde-tectingcoherentstructuresinacomplexdataset,andillustrateitseffec-tivenesswithcomputervisionapplications.Bycomplexdata,wemeanthattheattributevariationsamongthedataaretooextensivesuchthatcl

3、usteringbasedonasinglefeaturerepresentation/descriptorisinsuffi-cienttofaithfullydividethedataintomeaningfulgroups.Theproposedmethodthusassumesthedataarerepresentedwithvariousfeaturerep-resentations,andaimstouncovertheunderlyingclusterstructure.Tothatend,wea

4、ssociateeachclusterwithaboostingclassifierderivedfrommultiplekernellearning,andapplythecluster-specificclassifiertofeatureselectionacrossvariousdescriptorstobestseparatedataoftheclusterfromtherest.Specifically,weintegratethemultiple,correlativetrainingtasksoft

5、hecluster-specificclassifiersintotheclusteringprocedure,andcastthemasajointconstrainedoptimizationproblem.Throughtheop-timizationiterations,theclusterstructureisgraduallyrevealedbytheseclassifiers,whiletheirdiscriminantpowertocapturesimilardatawouldbeprogress

6、ivelyimprovedowingtobetterdatalabeling.1IntroductionClusteringisatechniquetopartitionthedataintogroupssothatsimilar(orcoherent)objectsandtheirpropertiescanbereadilyidentifiedandexploited.Whilesuchagoalisexplicitandclear,thenotionofsimilarityisoftennotwellde

7、fined,partlyduetothelackofauniversallyapplicablesimilaritymeasure.Asaresult,previousresearcheffortsondevelopingclusteringalgorithmsmostlyfocusondealingwithdifferentscenariosorspecificapplications.Inthefieldofvisionresearch,performingdataclusteringisessentialina

8、ddressingvarioustaskssuchasobjectcategorization[1,2]orimagesegmentation[3,4].Despitethegreatapplicability,afundamentaldifficultyhinderingtheadvanceofclusteringtechniquesisthattheintrinsicclusterstructureisnotev

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。