[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis

[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis

ID:40702289

大小:496.12 KB

页数:10页

时间:2019-08-06

[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis_第1页
[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis_第2页
[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis_第3页
[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis_第4页
[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis_第5页
资源描述:

《[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JointSentiment/TopicModelforSentimentAnalysisChenghuaLinYulanHeSchoolofEngineering,ComputingandKnowledgeMediaInstituteMathematicsTheOpenUniversityUniversityofExeterMiltonKeynesMK76AA,UKNorthParkRoad,ExeterEX44QF,UKy.l.he.01@cantab.netcl322@exeter.ac.ukABSTRACThavebeenmuchi

2、nterestsinthenaturallanguageprocessingcommunitytodevelopnoveltextminingtechniqueswiththeSentimentanalysisoropinionminingaimstouseautomatedcapabilityofaccuratelyextractingcustomers’opinionsfromtoolstodetectsubjectiveinformationsuchasopinions,at-largevolumesofunstructuredtex

3、tdata.titudes,andfeelingsexpressedintext.Thispaperpro-Amongvariousopinionminingtasks,oneofthemissenti-posesanovelprobabilisticmodelingframeworkbasedonLa-mentclassification,i.e.whetherthesemanticorientationoftentDirichletAllocation(LDA),calledjointsentiment/topicatextisposit

4、ive,negativeorneutral.Whenapplyingma-model(JST),whichdetectssentimentandtopicsimultane-chinelearningtosentimentclassification,mostexistingap-ouslyfromtext.Unlikeothermachinelearningapproachesproachesrelyonsupervisedlearningmodelstrainedfromla-tosentimentclassificationwhichof

5、tenrequirelabeledcor-beledcorporawhereeachdocumenthasbeenlabeledaspos-poraforclassifiertraining,theproposedJSTmodelisfullyitiveornegativepriortotraining.Suchlabeledcorporaareunsupervised.Themodelhasbeenevaluatedonthemovienotalwayseasilyobtainedinpracticalapplications.Also,r

6、eviewdatasettoclassifythereviewsentimentpolarityandsentimentclassificationmodelstrainedononedomainmightminimumpriorinformationhavealsobeenexploredtofur-notworkatallwhenmovingtoanotherdomain.Further-therimprovethesentimentclassificationaccuracy.Prelimi-more,inamorefine-grained

7、sentimentclassificationprob-naryexperimentshaveshownpromisingresultsachievedbylem(e.g.findingusers’opinionsforaparticularproductJST.feature),topic/featuredetectionandsentimentclassificationareoftenperformedinatwo-stagepipelineprocess,byfirstCategoriesandSubjectDescriptorsdetec

8、tingatopic/featureandlaterassigningasentimentla-I.2.7[ArtificialIntelligence]:NaturalLangu

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。