资源描述:
《[dataguru.cn]Joint Sentiment Topic Model for Sentiment Analysis》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、JointSentiment/TopicModelforSentimentAnalysisChenghuaLinYulanHeSchoolofEngineering,ComputingandKnowledgeMediaInstituteMathematicsTheOpenUniversityUniversityofExeterMiltonKeynesMK76AA,UKNorthParkRoad,ExeterEX44QF,UKy.l.he.01@cantab.netcl322@exeter.ac.ukABSTRACThavebeenmuchi
2、nterestsinthenaturallanguageprocessingcommunitytodevelopnoveltextminingtechniqueswiththeSentimentanalysisoropinionminingaimstouseautomatedcapabilityofaccuratelyextractingcustomers’opinionsfromtoolstodetectsubjectiveinformationsuchasopinions,at-largevolumesofunstructuredtex
3、tdata.titudes,andfeelingsexpressedintext.Thispaperpro-Amongvariousopinionminingtasks,oneofthemissenti-posesanovelprobabilisticmodelingframeworkbasedonLa-mentclassification,i.e.whetherthesemanticorientationoftentDirichletAllocation(LDA),calledjointsentiment/topicatextisposit
4、ive,negativeorneutral.Whenapplyingma-model(JST),whichdetectssentimentandtopicsimultane-chinelearningtosentimentclassification,mostexistingap-ouslyfromtext.Unlikeothermachinelearningapproachesproachesrelyonsupervisedlearningmodelstrainedfromla-tosentimentclassificationwhichof
5、tenrequirelabeledcor-beledcorporawhereeachdocumenthasbeenlabeledaspos-poraforclassifiertraining,theproposedJSTmodelisfullyitiveornegativepriortotraining.Suchlabeledcorporaareunsupervised.Themodelhasbeenevaluatedonthemovienotalwayseasilyobtainedinpracticalapplications.Also,r
6、eviewdatasettoclassifythereviewsentimentpolarityandsentimentclassificationmodelstrainedononedomainmightminimumpriorinformationhavealsobeenexploredtofur-notworkatallwhenmovingtoanotherdomain.Further-therimprovethesentimentclassificationaccuracy.Prelimi-more,inamorefine-grained
7、sentimentclassificationprob-naryexperimentshaveshownpromisingresultsachievedbylem(e.g.findingusers’opinionsforaparticularproductJST.feature),topic/featuredetectionandsentimentclassificationareoftenperformedinatwo-stagepipelineprocess,byfirstCategoriesandSubjectDescriptorsdetec
8、tingatopic/featureandlaterassigningasentimentla-I.2.7[ArtificialIntelligence]:NaturalLangu