(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation

(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation

ID:40702067

大小:2.10 MB

页数:11页

时间:2019-08-06

(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第1页
(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第2页
(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第3页
(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第4页
(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation_第5页
资源描述:

《(已发表) Quasi-Stochastic Integration Filter for Nonlinear Estimation》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HindawiPublishingCorporationMathematicalProblemsinEngineeringVolume2014,ArticleID967127,10pageshttp://dx.doi.org/10.1155/2014/967127ResearchArticleQuasi-StochasticIntegrationFilterforNonlinearEstimationYong-GangZhang,Yu-LongHuang,Zhe-MinWu,andNingLiCollegeofAutomation,HarbinEngi

2、neeringUniversity,No.145NantongStreet,NangangDistrict,Harbin150001,ChinaCorrespondenceshouldbeaddressedtoYu-LongHuang;heuedu@163.comReceived21October2013;Revised18May2014;Accepted24May2014;Published23June2014AcademicEditor:DanSimonCopyright©2014Yong-GangZhangetal.Thisisanopenacc

3、essarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.Inpracticalapplications,numericalinstabilityproblem,systematicerrorproblemcausedbynonlinearapproximation,andn

4、onlocalsamplingproblemforhigh-dimensionalapplications,existinunscentedKalmanfilter(UKF).Tosolvetheseproblems,aquasi-stochasticintegrationfilter(QSIF)fornonlinearestimationisproposedinthispaper.nonlocalsamplingproblemissolvedbasedontheunbiasedpropertyofstochasticsphericalintegrat

5、ionrule,whichcanalsoreducesystematicerrorandimprovefilteringaccuracy.Inaddition,numericalinstabilityproblemissolvedbyusingfixedradialintegrationrule.Simulationsofbearing-onlytrackingmodelandnonlinearfilteringproblemwithdifferentstatedimensionsshowthattheproposedQSIFhashigherfilt

6、eringaccuracyandgoodnumericalstabilityascomparedwithexistingmethods,anditcanalsosolvenonlocalsamplingproblemeffectively.1.IntroductionTheunscentedtransformation-(UT-)basedunscentedKalmanfilter(UKF)isatypicalGaussianapproximatefilterNonlinearfilteringhasbeenwidelyusedinmanyappli-

7、andhasbeenwidelyusedduetoitseaseofimplementation,cations.Generally,filteringproblemcanbeaddressedbymodestcomputationalcost,andappropriateperformanceusingBayesianestimationtheory,whichprovidesanoptimal[12,13].However,UKFsuffersfromthreemainproblemssolutionfordynamicstateestimatio

8、nproblembycomputinginitspracticalapplications:n

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。