Introduction to stochastic finite element methods _SFEM

Introduction to stochastic finite element methods _SFEM

ID:40634223

大小:2.24 MB

页数:41页

时间:2019-08-05

Introduction to stochastic finite element methods _SFEM_第1页
Introduction to stochastic finite element methods _SFEM_第2页
Introduction to stochastic finite element methods _SFEM_第3页
Introduction to stochastic finite element methods _SFEM_第4页
Introduction to stochastic finite element methods _SFEM_第5页
资源描述:

《Introduction to stochastic finite element methods _SFEM》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LiteraturereviewJianwenFENGPh.DcandidateatSwanseaUniversity,UnitedKingdomAdvisedbyDr.ChenfengLiFundedbyZienkiewiczScholarshipProgramBackgroundRandomnessisubiquitousMacro-scaleMicro-scaleMechanics,heat,dielectric,magnetic…StochasticfiniteelementUncertaintyfromconstitutiveUncertaintyfromr

2、elationship&geometryexternalforcesWhatisthestochasticoutput?OutlinePreliminaryknowledgeonstatisticsRepresentationofrandomfieldsStochasticequationsolveProbabilitytheoryOnerandomvariableXCumulativedistributionfunctionProbabilitydensityfunction(PDF)MomentsTworandomvariablesJointCu

3、mulativedistributionfunctionJointProbabilitydensityfunctionMarginalprobabilitydensityfunctionMomentsNrandomvariable:straightforwardTwospecificrelationsbetweentworandomvariables:UncorrelationandindependenceUncorrelation(whitenoise)IndependenceIndependenceismuchmorestrongerthanunco

4、rrelationIndependentUncorrelationRandomfields(Randomprocesses)Randomfields:afamilyofrandomvariablesTherelationamongthoserandomvariablesareverycomplexJointprobabilitydistributionfunctionofALLtheserandomvariablesisrequiredtouniquelydeterminetherandomfieldThejointprobabilitydistributio

5、nisavailableNEITHERanalyticallyNORnumericallyWeaklystationaryprocessStronglystationaryprocess:•PDFinvariantwithtranslationWeaklystationaryprocess:correlationfunctioninvariantwithtranslationCovXt1,Xt2Rt1t2RR:correlationfunctionWeaklystationaryprocessAdvantagesOnlyafe

6、wsamplesareneededtoobtainstatisticalinformation(ergodicity)DOFreducedsignificantlyCovoperatoriseasiertouseDisadvantagesTruncateddescriptionofarandomfieldOnlyGaussianrandomfieldscanbecompleteddepictedviafirstandsecondordermomentsGaussianrandomfieldsJointdistributionofarbitraryvaria

7、tesareMulti-Gaussian(normal)distributionMarginaldistributionisGaussian(Normaldistribution)Probabilisticpropertiesarecompletelydeterminedbyitsfirst-andsecond-ordermomentsForGaussianfields,uncorrelation=independenceConvenienttouse,butonlyallowrelativelyconcentratedfluctuation

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。