G_extra_problems 习题 G.'t Hooft

G_extra_problems 习题 G.'t Hooft

ID:40632514

大小:86.78 KB

页数:8页

时间:2019-08-05

G_extra_problems 习题 G.'t Hooft_第1页
G_extra_problems 习题 G.'t Hooft_第2页
G_extra_problems 习题 G.'t Hooft_第3页
G_extra_problems 习题 G.'t Hooft_第4页
G_extra_problems 习题 G.'t Hooft_第5页
资源描述:

《G_extra_problems 习题 G.'t Hooft》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheenergymomentumtensorThisisalsoalittleexerciseofinsertingcatthecorrectplaces.Weputcequal1forconvenienceandre-insertitattheend.RecalltheEulerequationsforanidealfluidwithdensityρ(xi,t)andvelocityvi(xj,t):∂ρ∂(ρvi)+=0∂t∂xi∂pj∂(pjvi)∂pj+=(Forcedensity)=−∂t∂xi∂xjwherepj≡ρvjisthej-componentofthemo

2、mentumdensityandpisthepressure.Thefirstequation(thecontinuityequation)expressestheconservationofmass,thenextequationexpressesthatthechangeof(acomponentof)momentumpervolumeaccordingtoNewton’ssecondlawisequaltotheforcecomponentpervolume,i.e.minusthegradientofthepressure.Usingthecontinuityequati

3、oninthemomentumequation,thislattercanbewrittenas∂v1+(v·∇)v=−∇p,(1)∂tρwhilethecontinuityequationcanbewrittenasacurrentconservation:µµ∂µj=0,j=(ρ,ρv)(2)Foranidealfluidwehave:µνµνµνµνT=pη+(p+ρ)UU,∂νT=0,(3)whereUµ=γ(v)(1,vi)isthefour-velocity(UUµ=−1).µ(4)Writeouttheequationsexplicitlyforµ=0a

4、ndforµ=i,andshow(usingbothequations)thattheoneforµ=icanbewrittenas∂v1−v2∂p+(v·∇)v=−∇p+v.∂tp+ρ∂t(5)Showthatthisequationreducesto(1)inthenon-relativisticlimitandthattheequationforµ=0likewisereducesto(2)inthenon-relativisticlimit.2Problemset2constantacceleration,partIConsidertheequation

5、ofmotioninSRforapointparticle:dp1v=F,p=m0γv,γ=,β=.dt1−β2cConsiderthesituationwhereFpointsalongthex-axisandhastheconstantvalueF=m0g.Assumethatthevelocityiszeroattimet=0.(1)Showthatthemotionoftheparticleishyperbolic:2222c02cx+−(x)=,(4)ggwherex0=ctandy=z=0.(2)LetIdenotetheinitialsyste

6、mwheretheparticleisatrestatt=0.Showthatthepropertime(timesc)ofaclockfollowingtheacceleratedparticleisgivenby:c2gx0−1τ=sinh,(5)gc2i.e.20cgτx=sinh.(6)gc2(3)ShowthatthetransformationfromaninertialsystemI’,wheretheacceleratedparticleisatrestatpropertimeτatx=0(andy=z=0)withx0=0toIisgivenb

7、y:2cgτgτ0gτx=cosh−1+xcosh+xsinh(7)gc2c2c220cgτgτ0gτx=sinh+xsinh+xcosh(8)gc2c2c23DerivationofthegeodesicequationDefinethefollowingquantity:λ2dxS[x(λ)]=dλL(x(λ),x˙(λ)),x˙(λ)≡.(30)λ1dλSisafunctionalofthesetofpathsx(λ).AssumenowthatL

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。