MATLAB人工神经网络

MATLAB人工神经网络

ID:40560577

大小:525.42 KB

页数:10页

时间:2019-08-04

MATLAB人工神经网络_第1页
MATLAB人工神经网络_第2页
MATLAB人工神经网络_第3页
MATLAB人工神经网络_第4页
MATLAB人工神经网络_第5页
资源描述:

《MATLAB人工神经网络》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、ArtificialNeuralNetworksAbstract:TheArtificialNeuralNetwork(ANN)isafunctionalimitationofsimplifiedmodelofthebiologicalneuronsandtheirgoalistoconstructuseful‘computers’forreal-worldproblemsandreproduceintelligentdataevaluationtechniqueslikepatternreco

2、gnition,classificationandgeneralizationbyusingsimple,distributedandrobustprocessingunitscalledartificialneurons.Thispaperwillpresentasimpleapplicationoftheartificialneuralnetwork:process,designandperformanceanalysis.1.WorkingprocessofArtificialNeural

3、NetworksAnartificialneuronmodelsthedendritesofabiologicalneuronbyreceivingoneormoreinputs,thenapplyingappropriateweights(positiveornegativemultipliers)tothesignals,andpassestheweightedinputstothesoma.Thesomaorbodyofanartificialneuron,receivestheweigh

4、tedinputsandcomputesasingleoutputsignal(adiscreteorcontinuousfunctionofthesumoftheweightedinputs)byapplyingathresholdortransferfunction(Yoon,1989).Thelastsectionofeachartificialneuronisanalogoustotheaxonofabiologicalneuron,andpassestheoutputsignaltoo

5、neormoresubsequentartificialneuronsortotheoutsideworld.Everynon-trivialartificialneuralnetworkcontainsaninputlayerandanoutputlayer.Mostalsocontainoneormoreintermediateprocessinglayers.TypesofNeuralNetworks:Bothfeed-forwardandrecurrentnetworksareexamp

6、lesofsupervisedlearning.Inunsupervisedlearning,noexternalteacherisrequired.Thesystemself-organizestheinputdata,discoveringforitselftheregularitiesandcollectivepropertiesofthedata.Thesefeed-forwardnetworkshavetheabilitytolearn.Todoso,anartificialneura

7、lnetworkmustlearntoproduceadesiredoutputbymodifyingtheweightsfromitsinputs.Theprocessofhowthisisdoneissimple.2.ProblemsA.9trainingsamples,361testingsamples.B.9trainingsamples,361testingsamples.C.11*11trainingsamples,41*41testingsamples.3.DesigningWei

8、ghtedSumactivationfunctionerrorfunctionStep1:initializetheweightparametersandotherparametersdefaultpoints=50;%%隐含层节点数inputpoints=2;%%输入层节点数outputpoints=2;%%输出层节点数Testerror=zeros(1,100);%每个测试点的误差记录a=zeros(1,inputpoints);%输入层节点值y=zeros(1,outputpoints);

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。