2012_user-friendly tail bounds for sums of random matrices_FOCM

2012_user-friendly tail bounds for sums of random matrices_FOCM

ID:40554669

大小:1.26 MB

页数:46页

时间:2019-08-04

2012_user-friendly tail bounds for sums of random matrices_FOCM_第1页
2012_user-friendly tail bounds for sums of random matrices_FOCM_第2页
2012_user-friendly tail bounds for sums of random matrices_FOCM_第3页
2012_user-friendly tail bounds for sums of random matrices_FOCM_第4页
2012_user-friendly tail bounds for sums of random matrices_FOCM_第5页
资源描述:

《2012_user-friendly tail bounds for sums of random matrices_FOCM》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FoundComputMath(2012)12:389434DOI10.1007/s10208-011-9099-zUser-FriendlyTailBoundsforSumsofRandomMatricesJoelA.TroppReceived:16January2011/Accepted:13June2011/Publishedonline:2August2011©TheAuthor(s)2011.ThisarticleispublishedwithopenaccessatSpringerlink.comAbstractThispaperpresentsnewprobab

2、ilityinequalitiesforsumsofindependent,random,self-adjointmatrices.Theseresultsplacesimpleandeasilyverifiablehy-pothesesonthesummands,andtheydeliverstrongconclusionsaboutthelarge-deviationbehaviorofthemaximumeigenvalueofthesum.Tailboundsforthenormofasumofrandomrectangularmatricesfollowasanimm

3、ediatecorollary.Theprooftechniquesalsoyieldsomeinformationaboutmatrix-valuedmartingales.Inotherwords,thispaperprovidesnoncommutativegeneralizationsoftheclassi-calboundsassociatedwiththenamesAzuma,Bennett,Bernstein,Chernoff,Hoeffd-ing,andMcDiarmid.Thematrixinequalitiespromisethesamediversity

4、ofapplica-tion,easeofuse,andstrengthofconclusionthathavemadethescalarinequalitiessovaluable.KeywordsDiscrete-timemartingale·Largedeviation·Probabilityinequality·Randommatrix·SumofindependentrandomvariablesMathematicsSubjectClassification(2000)Primary60B20·Secondary60F10·60G50·60G42Communicat

5、edbyAlbertCohen.J.A.Tropp()Computing&MathematicalSciences,MC305-16,CaliforniaInstituteofTechnology,Pasadena,CA91125,USAe-mail:jtropp@cms.caltech.edu390FoundComputMath(2012)12:3894341IntroductionRandommatriceshavecometoplayasignificantroleincomputationalmathemat-ics.Thislineofresearchhasadva

6、ncedbyusingestablishedmethodsfromrandommatrixtheory,butithasalsogenerateddifficultquestionsthatcannotbeaddressedwithoutnewtools.Letussummarizesomeofthechallengesthatariseinnumericalapplications.•Researchhasextendedwellbeyondtheclassicalensembles(e.g.,WishartmatricesandWignermatrices)toencomp

7、assmanyotherclassesofrandommatrices.Forinstance,itisnowcommontostudythepropertiesofasparsematrixsampledfromafixedmatrixorarandomsubmatrixdrawnfromafixedmatrix.•Wealsoencounterhighlystructuredmatricesthatinvolvealimitedamountofran-domness.Oneimportantexampl

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。