欢迎来到天天文库
浏览记录
ID:40475993
大小:488.01 KB
页数:7页
时间:2019-08-03
《二次函数解析式练习题43117》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、二次函数图象与性质知识点一、二次函数的定义: 形如y=ax2+bx+c(a≠0,a,b,c为常数)的函数称为二次函数(quadraticfuncion).其中a为二次项系数,b为一次项系数,c为常数项.知识点二、二次函数的图象及画法 二次函数y=ax2+bx+c(a≠0)的图象是对称轴平行于y轴(或是y轴本身)的抛物线.几个不同的二次函数.如果二次项系数a相同,那么其图象的开口方向、形状完全相同,只是顶点的位置不同. 1.用描点法画图象 首先确定二次函数的开口方向、对称轴、顶点坐标,然后在对称轴两侧,以顶点为中心,左
2、右对称地画图.画结构图时应抓住以下几点:对称轴、顶点、与x轴的交点、与y轴的交点. 2.用平移法画图象 由于a相同的抛物线y=ax2+bx+c的开口及形状完全相同,故可将抛物线y=ax2的图象平移得到a值相同的其它形式的二次函数的图象.步骤为:利用配方法或公式法将二次函数化为y=a(x-h)2+k的形式,确定其顶点(h,k),然后做出二次函数y=ax2的图象.将抛物线y=ax2平移,使其顶点平移到(h,k). 知识点三、二次函数y=ax2+bx+c(a≠0)的图象与性质1.函数y=ax2(a≠0)的图
3、象与性质:函数a的符号图象开口方向顶点坐标对称轴增减性最大(小)值y=ax2a>0向上(0,0)y轴x>0时,y随x增大而增大x<0时,y随x增大而减小当x=0时,y最小=0y=ax2a<0向下(0,0)y轴x>0时,y随x增大而减小x<0时,y随x增大而增大当x=0时,y最大=02.函数y=ax2+c(a≠0)的图象及其性质: (1)当a>0时,开口方向、对称轴、增减性与y=ax2相同,不同的是顶点坐标为(0,c),当x=0时,y最小=c (2)当a<0时,开口方向、对称轴、增减性与y=ax2相同,不同的是顶点坐标为(
4、0,c),当x=0时,y最大=c3.二次函数y=ax2+bx+c(a≠0)的图象与性质:7 二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线.它的顶点坐标是, 对称轴是直线函数二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象a>0a<0性质(1)当a>0时,抛物线开口向上,并向上无限延伸,顶点是它的最低点.(2)在对称轴直线的左侧,抛物线自左向右下降,在对称轴的右侧,抛物线自左向右上升.(1)当a<0时,抛物线开口向下,并向下无限延伸,顶点是它的最高点.(2)在对称轴直线的左侧,抛物线自左向右上升;在
5、对称轴右侧,抛物线自左向右下降.知识点四、抛物线y=ax2+bx+c中a、b、c的作用a,b,c的代数式作用字母的符号图象的特征a1.决定抛物线的开口方向;2.决定增减性a>0开口向上a<0开口向下c决定抛物线与y轴交点的位置,交点坐标为(0,c)c>0交点在x轴上方c=0抛物线过原点c<0交点在x轴下方决定对称轴的位置,对称轴是直线ab>0对称轴在y轴左侧ab<0对称轴在y轴右侧b2-4ac决定抛物线与x轴公共点的个数b2-4ac>0抛物线与x轴有两个交点b2-4ac=0顶点在x轴上b2-4ac<0抛物线与x轴无公共点1.
6、求二次函数解析式的方法 一般来说,二次函数的解析式常见有以下几种形式.(1)一般式: y=ax2+bx+c(a,b,c为常数,a≠0)(2)顶点式: y=a(x-h)2+k(a,h,k为常数,a≠70) 要确定二次函数解析式,就是要确定解析式中的待定系数(常数),由于每一种形式中都含有三个待定系数,所以用待定系数法求二次函数的解析式,需要已知三个独立条件. 当已知抛物线上任意三点时,通常设函数解析式为一般式y=ax2+bx+c,然后列出三元一次方程组求解. 当已知抛物线的顶点坐标和抛物线上另一点时,通常设函数解析
7、式为顶点式y=a(x-h)2+k求解.2.确定二次函数最值的方法 确定二次函数的最大值或最小值,首先先看自变量的取值范围.再分别求出二次函数在顶点处的函数值和在端点处的函数值,比较这些函数值,其中最大的是函数的最大值,最小的是函数的最小值. ①若自变量的取值范围是全体实数,函数有最大值或最小值,如图所示. 图(1)中,抛物线开口向上,有最低点,则当时,函数有最小值是; 图(2)中,抛物线开口向下,有最高点,则当时,函数有最大值是. ②若自变量的取值范围不是全体实数,函数有最大值或最小值,如
8、图所示. 图(1)中,当时,函数有最大值;当时,函数有最小值7; 图(2)中,当时,函数有最大值;当时,函数有最小值; 图(3)中,当时,函数有最大值;当时,函数有最小值; 图(4)中,当时,函数有最大值;当时,函数有最小值; 图(5)中,当
此文档下载收益归作者所有