抽样调查的意义

抽样调查的意义

ID:40400189

大小:286.34 KB

页数:8页

时间:2019-08-01

抽样调查的意义_第1页
抽样调查的意义_第2页
抽样调查的意义_第3页
抽样调查的意义_第4页
抽样调查的意义_第5页
资源描述:

《抽样调查的意义》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、28.1.1圆的基本元素教学目标:使学生理解圆、等圆、等弧、圆心角等概念,让学生深刻认识圆中的基本概念。重点难点:1、重点:圆中的基本概念的认识。2、难点:对等弧概念的理解。OA教学过程:一、圆是如何形成的?请同学们画一个圆,并从画圆的过程中阐述圆是如何形成的。如右图,线段OA绕着它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形。同学们想一想,如何在操场上画出一个很大的圆?说说你的方法。由以上的画圆和解答问题的过程中,让同学们思考圆的位置是由什么决定的?而大小又是由谁决定的?(圆的位置由圆心决定,圆

2、的大小由半径长度决定)二、圆的基本元素问题:据统计,某个学校的同学上学方式是,有50%的同学步行上学,有20%的同学坐公共汽车上学,其他方式上学的同学有30%,请你用扇形统计图反映这个学校学生的上学方式。我们是用圆规画出一个圆,再将圆划分成一个个扇形,右上图28.1.1就是反映学校学生上学方式的扇子形统计图。图23.1.1如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“⊙O”。线段AB、BC、AC都是圆O中的弦,曲线BC、BAC都是圆中的弧,︵︵︵︵分

3、别记为BC、BAC,其中像弧BC这样小于半圆周的圆弧叫做劣弧,像弧BAC这样的大于半圆周的圆弧叫做优弧。∠AOB、∠AOC、∠BOC就是圆心角。A结合上面的扇形统计图,进一步阐述圆心角、优弧、劣弧等圆中的基本元素。三、课堂练习:1、直径是弦吗?弦是直径吗?2、半圆是弧吗?弧是半圆吗?BOC3、半径相等的两个圆是等圆,而两段弧相等需要什么条件呢?4、说出右图中的圆心解、优弧、劣弧。5、直径是圆中最长的弦吗?为什么?四、小结:本节课我们认识了圆中的一些元素,同学应能从具体的图形中对这些元素加以识别。五、作业:1、如

4、图,AB是⊙O的直径,C点在⊙O上,那么,哪一段弧是优弧,哪一段弧是劣弧?2、经过A、B两点的圆的几个?它们的圆心都在哪里?3、长方形的四个顶点在以为圆心,以为半径的圆上。4、如图,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于D,BC6cm,求OD的长。5、已知:如图,OA、OB为⊙O的半径,C、D分别为OA、OB的中点,试说明AD=BC。CCBABBDOOOAA第4题(第3题)第1题28.1.2圆的对称性教学目标:使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心

5、角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。重点难点:1、重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。2、难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。教学过程:一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的。如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完全重合。由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对

6、称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。二、新课1、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。垂直于弦的直径平分弦,并且平分弦所对的两条弧。图23.1.4图23.1.3实验1、将图形28.1.3中的扇形AOB绕点O逆时针旋转某个角度,得到图28.1.4中的图形,同学们可以通过比较前后两个图形,发现AOBAOB,ABAB,。AB=AB实质上,AOB确定了扇形AOB的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。问题:在同一个圆中,如果弧相等,

7、那么所对的圆心角,所对的弦是否相等呢?C在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧是否相等呢?O实验2、如图28.1.7,如果在图形纸片上任意画一条垂直于直径CD的弦AB,垂足AB︵︵D为P,再将纸片沿着直径CD对折,比较AP与PB、AC与CB,你能发现什么结论?图23.1.7显然,如果CD是直径,AB是⊙O中垂直于直径的弦,那么APBP,AC=BC,AD=BD。请同学们用一句话加以概括。(垂直于弦的直径平分弦,并且平分弦所对的两条弧)2、同一个圆中,圆心角、弧、弦之间的关系的应用。(1)思考:如图,

8、在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计种植方案。(2)如图28.1.5,在⊙O中,ACBC,145,求2的度数。图23.1.53、课堂练习:P38练习1、2、3三、课堂小结本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。