overfitting@chee-in-SCU

overfitting@chee-in-SCU

ID:40391452

大小:162.92 KB

页数:7页

时间:2019-08-01

overfitting@chee-in-SCU_第1页
overfitting@chee-in-SCU_第2页
overfitting@chee-in-SCU_第3页
overfitting@chee-in-SCU_第4页
overfitting@chee-in-SCU_第5页
资源描述:

《overfitting@chee-in-SCU》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、RichCaruana,SteveLawrence,C.LeeGiles.OverfittinginNeuralNetworks:Backpropagation,ConjugateGradient,andEarlyStopping,NeuralInformationProcessingSystems,Denver,Colorado,November28–30,2000.OverfittinginNeuralNets:Backpropagation,ConjugateGradient,andEarlyStoppingRichCarua

2、naSteveLawrenceLeeGilesCALD,CMUNECResearchInstituteInformationSciences5000ForbesAve.4IndependenceWayPennStateUniversityPittsburgh,PA15213Princeton,NJ08540UniversityPark,PA16801caruana@cs.cmu.edulawrence@research.nj.nec.comgiles@ist.psu.eduAbstractTheconventionalwisdo

3、misthatbackpropnetswithexcesshiddenunitsgeneralizepoorly.Weshowthatnetswithexcesscapacitygeneralizewellwhentrainedwithbackpropandearlystopping.Experimentssug-gesttworeasonsforthis:1)Overfittingcanvarysignificantlyindifferentregionsofthemodel.Excesscapacityallowsbetterfi

4、ttoregionsofhighnon-linearity,andbackpropoftenavoidsoverfittingtheregionsoflownon-linearity.2)Regardlessofsize,netslearntasksubcomponentsinsimilarsequence.Bignetspassthroughstagessimilartothoselearnedbysmallernets.Earlystoppingcanstoptrainingthelargenetwhenitgeneraliz

5、escomparablytoasmallernet.Wealsoshowthatconjugategradientcanyieldworsegeneralizationbecauseitoverfitsregionsoflownon-linearitywhenlearningtofitregionsofhighnon-linearity.1IntroductionItiscommonlybelievedthatlargemulti-layerperceptrons(MLPs)generalizepoorly:netswithtoom

6、uchcapacityoverfitthetrainingdata.Restrictingnetcapacitypreventsoverfit-tingbecausethenethasinsufficientcapacitytolearnmodelsthataretoocomplex.ThisbeliefisconsistentwithaVC-dimensionanalysisofnetcapacityvs.generalization:themorefreeparametersinthenetthelargertheVC-dimen

7、sionofthehypothesisspace,andthelesslikelythetrainingsampleislargeenoughtoselecta(nearly)correcthypothesis[2].Onceitbecamefeasibletotrainlargenetsonrealproblems,anumberofMLPusersnotedthattheoverfittingtheyexpectedfromnetswithexcesscapacitydidnotoccur.Largenetsappearedt

8、ogeneralizeaswellassmallernets—sometimesbetter.TheearliestreportofthisthatweareawareofisMartinandPittmanin1991:“Wefindonlymarginalan

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签