欢迎来到天天文库
浏览记录
ID:40367128
大小:4.45 MB
页数:212页
时间:2019-08-01
《7 Efficient solutions to autonomous mapping and navigation problems版本》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、EfficientSolutionstoAutonomousMappingandNavigationProblemsStefanBernardWilliamsAthesissubmittedinfulfillmentoftherequirementsforthedegreeofDoctorofPhilosophyAustralianCentreforFieldRoboticsDepartmentofMechanicalandMechatronicEngineeringTheUniversityofSydneySeptember
2、2001DeclarationThisthesisissubmittedtoTheUniversityofSydneyinfulfillmentoftherequirementsforthedegreeofDoctorofPhilosophy.Thisthesisisentirelymyownworkand,exceptwhereotherwisestated,describesmyownresearch.StefanBernardWilliamsAustralianCentreforFieldRoboticsTheUni
3、versityofSydneyCopyrightc2001StefanBWilliamsAllrightreservediiiAbstractStefanBernardWilliamsDoctorofPhilosophyTheUniversityofSydneySeptember2001EfficientSolutionstoAutonomousMappingandNavigationProblemsThisthesisdealswiththeSimultaneousLocalisationandMappingalgori
4、thmasitpertainstothedeploymentofmobilesystemsinunknownenvironments.SimultaneousLocalisationandMapping(SLAM)asdefinedinthisthesisistheprocessofconcurrentlybuildingupamapoftheenvironmentandusingthismaptoobtainimprovedestimatesofthelocationofthevehicle.Inessence,thev
5、ehiclereliesonitsabilitytoextractusefulnavigationinfor-mationfromthedatareturnedbyitssensors.Thevehicletypicallystartsatanunknownlocationwithnoaprioriknowledgeoflandmarklocations.Fromrelativeobservationsoflandmarks,itsimultaneouslycomputesanestimateofvehiclelocat
6、ionandanestimateoflandmarklocations.Whilecontinuinginmotion,thevehiclebuildsacompletemapoflandmarksandusesthesetoprovidecontinuousestimatesofthevehiclelocation.Thepo-tentialforthistypeofnavigationsystemforautonomoussystemsoperatinginunknownenvironmentsisenormous.
7、OnesignificantobstacleontheroadtotheimplementationanddeploymentoflargescaleSLAMalgorithmsisthecomputationaleffortrequiredtomaintainthecorrelationinforma-tionbetweenfeaturesinthemapandbetweenthefeaturesandthevehicle.PerformingtheupdateofthecovariancematrixisofO(n3)f
8、orastraightforwardimplementationoftheKalmanFilter.InthecaseoftheSLAMalgorithm,thiscomplexitycanbereducedtoO(n2)giventhesparsenatureoftypicalobservations.Evenso
此文档下载收益归作者所有