资源描述:
《backward and forward equations for diffusion process》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BackwardandForwardequationsforDiffusionprocesses.ArkaP.GhoshDepartmentofStatisticsIowaStateUniversityAmes,IA50011-1210apghosh@iastate.edu(515)294-7851.February1,2010AbstractThissectionisdevotedtothediscussionoftwofundamental(partial)differentialequations,thatariseinthecontextofMarko
2、vdiffusionprocesses.Aftergivingabriefintroductionofcontinuous-timecontinuousstateMarkovprocesses,weintroducetheforwardandbackwardequation,andprovideaheuristicderivationoftheseequationsfordiffusionprocesses.Wealsodiscusssomeexamplesandfeaturesofthesetwoequations.Inthissectionwediscus
3、stwopartialdifferentialequations(PDE)thatariseinthetheoryofcontinuous-timecontinuous-stateMarkovprocesses,whichwasintroducedbyKolmogorovin1931.Here,wefocusonlyonMarkovdiffusionprocesses(seeSection2.1.6.1)anddescribetheforwardandbackwardequationforsuchprocesses.Theforwardequationisal
4、soknownasFokker-Planckequation(andwasalreadyknowninthephysicsliteraturebeforeKolmogorovformulatedthese).Webeginbyabriefintroductiontocontinuous-timecontinuous-stateMarkovprocesseswhicharecontinuousanalogsofDiscreteTimeMarkovChains(DTMC)andContinuousTimeMarkovChains(CTMC)discussede
5、arlierinSection2.1.1and2.1.2followedbysomebasicpropertiesofMarkovprocesses.Thenwestatethetwoequationsandprovidesketchesoftheproofs.Finally,weconcludethesectionwithsomespecificexamplesandfeaturesoftheseequations.Preliminaries.DiffusionprocesseshavebeendiscussedinSection2.1.6.1.Forsim
6、plicityoftheexposition,weconsiderthefollowingtime-homogeneousversionofthediffusionprocessforthissection:A(time-homogeneous)ltˆodiffusionisastochasticprocess{X(t)}satisfyingastochasticdifferentialequationoftheformdX(t)=b(X(t))dt+σ(X(t))dW(t),t>0;X(0)=x,(1)where{W(t)}isa(standard)Brown
7、ianmotionandb,σarefunctionsthatsatisfy:
8、σ(x)−σ(y)
9、10、x−y
11、;x,y∈IR.1Itcanbeshownthatfor{FtW},{FtX}representingthefiltrationsgeneratedbyWandX,FX⊆FW.(2)ttMarkovproperty:hThediffusionsatisfiestheiMarkovproperty:Iffisaboundedmeasurablefunction,thenExf(X(t+h)
12、FtW=EX(t)[f(X(h)],wherethesuper
13、scriptintheexpectationrepresentst