backward and forward equations for diffusion process

backward and forward equations for diffusion process

ID:40357379

大小:131.34 KB

页数:6页

时间:2019-07-31

backward and forward equations for diffusion process_第1页
backward and forward equations for diffusion process_第2页
backward and forward equations for diffusion process_第3页
backward and forward equations for diffusion process_第4页
backward and forward equations for diffusion process_第5页
资源描述:

《backward and forward equations for diffusion process》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BackwardandForwardequationsforDiffusionprocesses.ArkaP.GhoshDepartmentofStatisticsIowaStateUniversityAmes,IA50011-1210apghosh@iastate.edu(515)294-7851.February1,2010AbstractThissectionisdevotedtothediscussionoftwofundamental(partial)differentialequations,thatariseinthecontextofMarko

2、vdiffusionprocesses.Aftergivingabriefintroductionofcontinuous-timecontinuousstateMarkovprocesses,weintroducetheforwardandbackwardequation,andprovideaheuristicderivationoftheseequationsfordiffusionprocesses.Wealsodiscusssomeexamplesandfeaturesofthesetwoequations.Inthissectionwediscus

3、stwopartialdifferentialequations(PDE)thatariseinthetheoryofcontinuous-timecontinuous-stateMarkovprocesses,whichwasintroducedbyKolmogorovin1931.Here,wefocusonlyonMarkovdiffusionprocesses(seeSection2.1.6.1)anddescribetheforwardandbackwardequationforsuchprocesses.Theforwardequationisal

4、soknownasFokker-Planckequation(andwasalreadyknowninthephysicsliteraturebeforeKolmogorovformulatedthese).Webeginbyabriefintroductiontocontinuous-timecontinuous-stateMarkovprocesseswhicharecontinuousanalogsofDiscreteTimeMarkovChains(DTMC)andContinuousTimeMarkovChains(CTMC)discussede

5、arlierinSection2.1.1and2.1.2followedbysomebasicpropertiesofMarkovprocesses.Thenwestatethetwoequationsandprovidesketchesoftheproofs.Finally,weconcludethesectionwithsomespecificexamplesandfeaturesoftheseequations.Preliminaries.DiffusionprocesseshavebeendiscussedinSection2.1.6.1.Forsim

6、plicityoftheexposition,weconsiderthefollowingtime-homogeneousversionofthediffusionprocessforthissection:A(time-homogeneous)ltˆodiffusionisastochasticprocess{X(t)}satisfyingastochasticdifferentialequationoftheformdX(t)=b(X(t))dt+σ(X(t))dW(t),t>0;X(0)=x,(1)where{W(t)}isa(standard)Brown

7、ianmotionandb,σarefunctionsthatsatisfy:

8、σ(x)−σ(y)

9、

10、x−y

11、;x,y∈IR.1Itcanbeshownthatfor{FtW},{FtX}representingthefiltrationsgeneratedbyWandX,FX⊆FW.(2)ttMarkovproperty:hThediffusionsatisfiestheiMarkovproperty:Iffisaboundedmeasurablefunction,thenExf(X(t+h)

12、FtW=EX(t)[f(X(h)],wherethesuper

13、scriptintheexpectationrepresentst

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。