Fitting larger networks into memory

Fitting larger networks into memory

ID:40351634

大小:1.26 MB

页数:24页

时间:2019-07-31

Fitting larger networks into memory_第1页
Fitting larger networks into memory_第2页
Fitting larger networks into memory_第3页
Fitting larger networks into memory_第4页
Fitting larger networks into memory_第5页
资源描述:

《Fitting larger networks into memory》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ApplausefromThomasWolfand14othersYaroslavBulatovFollowJan14·12minreadFittinglargernetworksintomemory.TLDR;wereleasethepython/Tensorowpackageopenai/gradient-checkpointing,thatletsyout10xlargerneuralnetsintomemoryatthecostofanadditional20%computationtime.GPUmemoryisoftenthelimitingfactorf

2、ormodernneuralnetworkarchitectures.Memoryrequirementtotrainaneuralnetworkincreaseslinearlywithbothnetworkdepthandbatch-size.Youwanttogodeeperforstandardreasons,butalsotoincreasethebatch-sizetomakeuseofsecondordermethodslikeKFAC.Suchmethodsneedfewerexamplestolearncomparedtomini-batchSGD.To

3、day,wereleaseapython/Tensorowpackage,openai/gradient-checkpointing,thatextendsthetechniquein“TrainingDeepNetswithSublinearMemoryCost”,TianqiChenetal,torewriteyourTensorFlowmodeltouselessmemory.Itgivesequivalentmemorysavingforsimplefeed-forwardnetworks,butitalsoletsyousavememoryforgeneral

4、neuralnetworks,suchasmulti-towerarchitecture.ThepackageisjointworkbyYaroslavBulatovandTimSalimans.ApplyingittoTensorFlowocialCIFAR10resnetexampleproducesthefollowingmemoryandexecutiontimesforbatchsize=1280.Whileregularbackpropscaleslinearly,thismethodscalesassquarerootofdepth.Thedierenc

5、eismoreapparentwhenwetryitoutfordeepernetworks.Extrapolatingmemoryrequirementofstandardapproachgives60GBofmemorytorunthisiteration,meanwhilememorysavinggradientsaccomplishesitin6GBofRAM.Computationoverheadis1extraforwardpassregardlessofdepth.Inexperimentsthistranslatedto20%increaseinwall-

6、clocktimeonGTX1080,and30%increaseinwall-clocktimeonV100GPU.Howmemorysavingworks:ThepebblegameTounderstandmemoryrequirementsofgeneralcomputation,computerscientistsusetheconceptofthe“pebblegame”,introducedin“CompleteRegisterAllocationProblems”bySethiin1975.ConsiderthefollowingcomputationYou

7、canvisualizethiscomputationasacomputationgraph:Inordertocomputeeachvalue,youneedtohaveitsdependenciesloadedintomemory.Thisisrepresentedbyplacing“pebbles”onthechildrenofthenode.Onceallchildrenofanodehavepebblesonthem,thenodeisreadyforexecution.Computingitsvalueisrepr

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。