欢迎来到天天文库
浏览记录
ID:40155618
大小:819.05 KB
页数:19页
时间:2019-07-23
《《青蓝工程好》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、简单的线性规划(2)xyo银光中学:何蕊⑴二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)(一)复习回顾(2)二元一次不等式组表示平面区域:各个不等式所表示平面区域的公共部分。提出问题:设z=2x+y,式中的变量x、y满足下列条件(1),求z的最大值和最小值思考、讨论下列问题:(1)不等式组(1)表示什么?(2)在函数z=2x+y中,z的几何意义是什么?(3)要解决的问题能转化成什么?二、尝试探究,生疑释疑设z=2x+y,求z的最大值和最小值yxOx-4y=-33x+5y=25x=1AB
2、作直线l0:y=-2xl0将l0平行移动得一组平行直线:y=-2x+zl1l2则当直线l1经过B(1,1)点时,Z的值最小,zmin=2×1+1=3则当直线l2经过A(5,2)点时,Z的值最大,zmax=2×5+2=12yxOx-4y+3=03x+5y-25=0x=1设z=2x+y,求z的最大值和最小值y=-2x+z(1,1)(5,2)问题:设z=2x+y,式中变量满足下列条件:求z的最大值与最小值。目标函数(线性目标函数)提炼概念约束条件(线性约束条件)线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题满足线性约束条件的解(x,y)所有可行解组成的集合称为
3、可行域使目标函数取到最大值或最小值的可行解可行解最优解yxOx-4y+3=03x+5y-25=0x=1AB可行域有关概念由x,y的不等式(或方程)组成的不等式组称为x,y的约束条件。关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件。欲达到最大值或最小值所涉及的变量x,y的解析式称为目标函数。关于x,y的一次目标函数称为线性目标函数。求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。满足线性约束条件的解(x,y)称为可行解。所有可行解组成的集合称为可行域。使目标函数取得最大值或最小值的可行解称为最优解。AB作直线l0:y=-2xl0将l0
4、平行移动得一组平行直线:y=-2x+zl1l2则当直线l1经过B(1,1)点时,Z的值最小,zmin=2×1+1=3则当直线l2经过A(5,2)点时,Z的值最大,zmax=2×5+2=12yxOx-4y+3=03x+5y-25=0x=1设z=2x+y,求z的最大值和最小值y=-2x+z(1,1)(5,2)1、图解法解线性规划问题的一般步骤:(1)画“域”:(2)移“线”:(3)求“解”:(4)回答:画出线性约束条件所表示的可行域,它可以是封闭的多边形,也可以是一侧开放的无限大的平面区域利用平移的方法在线性目标函数所表示的一组平行线中,找出与可行域有公共点且纵截距最大或最小
5、的直线,最先或最后通过的点便是所找的点通过解方程组求出最优解答出线性目标函数的最大值和最小值三、归纳总结、纳入系统1、基础训练:x、y满足约束条件:求z=2x+y的最大值四、课堂练习xoyy=xx+y=1y=-1A(2,-1)在点A(2,-1)处z=2x+y最大zmax=2×2+(-1)=3线性目标函数的最大(小)值一般在可行域的顶点处取得。ïîïíì-³£+£11yyxxyy=-2x约束条件线性约束条件目标函数线性目标函数线性规划问题可行解可行域最优解2、有关概念五、小结:1.图解法解线性规划问题的步骤:(1)画“域”(2)移“线”(3)求“解”(4)回答几个结论:1、
6、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义——在y轴上的截距或其相反数。作业:P71习题7.4第2题谢谢大家!再见四、课堂练习:1)求使的最大值,使x,y满足约束条件2)求使的最大值和最小值,使x,y满足约束条件551Oxyy-x=0x+y-1=01-1y+1=0A(2,-1)B(-1,-1)551Oxy1-15x+3y=15X-5y=3y=x+1A(-2,-1)B(3/2,5/2)
此文档下载收益归作者所有