欢迎来到天天文库
浏览记录
ID:40151200
大小:529.00 KB
页数:7页
时间:2019-07-23
《【7A文】高中函数图像大全》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、【MeiWei_81-优质适用文档】指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。⒉指数函数的定义仅是形式定义。指数函数的图像与性质:规律:1.当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。在y轴右边“底大图高”;在y轴左边“底大图低”。【MeiWei_
2、81-优质适用文档】【MeiWei_81-优质适用文档】3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。4.指数函数既不是奇函数也不是偶函数。比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移
3、。对数函数1.对数函数的概念由于指数函数y=ax在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=ax(a>0,a≠1)的反函数称为对数函数,并记为y=logax(a>0,a≠1).因为指数函数y=ax的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=logax的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x.据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=logax(a>0,a≠1)的性质,我们在同一直角坐标系中作出函
4、数y=log2x,y=log10x,y=log10x,y=logx,y=logx的草图【MeiWei_81-优质适用文档】【MeiWei_81-优质适用文档】由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a>0,a≠1)的图像的特征和性质.见下表.图象a>1a<1性质(1)x>0(2)当x=1时,y=0(3)当x>1时,y>00<x<1时,y<0(3)当x>1时,y<00<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=logaxy2=logbx其中a>1,b>1(或0<a<10
5、<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比名称指数函数对数函数一般形式y=ax(a>0,a≠1)y=logax(a>0,a≠1)定义域(-∞,+∞)(0,+∞)值域(0,+∞)(-∞,+∞)【
6、MeiWei_81-优质适用文档】【MeiWei_81-优质适用文档】函数值变化情况当a>1时,当0<a<1时,当a>1时当0<a<1时,单调性当a>1时,ax是增函数;当0<a<1时,ax是减函数.当a>1时,logax是增函数;当0<a<1时,logax是减函数.图像y=ax的图像与y=logax的图像关于直线y=x对称.幂函数幂函数的图像与性质幂函数随着的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数
7、图像都不过第四象限.②时,幂函数图像过原点且在上是增函数.③时,幂函数图像不过原点且在上是减函数.④何两个幂函数最多有三个公共点.奇函数偶函数非奇非偶函数OxyOxyOxy【MeiWei_81-优质适用文档】【MeiWei_81-优质适用文档】OxyOxyOxyOxyOxyOxy定义域RRR奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递增在第Ⅰ象限单调递减幂函数(R,是常数)的图像在第一象限的分布规律是:①所有幂函数(R,是常数)的图像都过点;②当时函数的图像都过原点;③当时,的的图像在第
8、一象限是第一象限的平分线(如);④当时,的的图像在第一象限是“凹型”曲线(如)⑤当时,的的图像
此文档下载收益归作者所有