回归分析的基本思想及其初步应用上

回归分析的基本思想及其初步应用上

ID:40144679

大小:2.56 MB

页数:28页

时间:2019-07-23

回归分析的基本思想及其初步应用上_第1页
回归分析的基本思想及其初步应用上_第2页
回归分析的基本思想及其初步应用上_第3页
回归分析的基本思想及其初步应用上_第4页
回归分析的基本思想及其初步应用上_第5页
资源描述:

《回归分析的基本思想及其初步应用上》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1回归分析的基本思想及初步应用什么是回归分析:“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此,X和Y之间存在一种相关关系。一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈的身高有向中心回归的特点。“回归”一词即源于此。虽然这种向中心回归的现象只

2、是特定领域里的结论,并不具有普遍性,但从它所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的回归含义是相同的。不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修1-2——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2和

3、模型拟合的效果之间的关系了解残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果1、两个变量的关系不相关相关关系函数关系线性相关非线性相关问题1:现实生活中两个变量间的关系有哪些呢?相关关系:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系。回顾复习思考:相关关系与函数关系有怎样的不同?函数关系中的两个变量间是一种确定性关系相关关系是一种非确定性关系函数关系是一种理想的关系模型相关关系在现实生活中大量存在,是更一般的情况问题2:对于线性相关的两个变量用什么方

4、法来刻划之间的关系呢?2、最小二乘估计最小二乘估计下的线性回归方程:回归直线必过样本点的中心3、回归分析的基本步骤:画散点图求回归方程预报、决策这种方法称为回归分析.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法.自学指导1:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。2:在线性回归模型中,e是用bx+a预报真实值y的随机误差,它是一个不可观测的量,那么应如何研究随机误差呢?3:如何发现数据中的错误?如何衡量随机模型的拟合效果?4:结合例1思考:用回归方程预报体重时应注意什么

5、?5:归纳建立回归模型的基本步骤。阅读课本1页—6页思考回答下列问题(注意:时间12分钟)例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。解:1、选取身高为自变量x,体重为因变量y,作散点图:发现:图中各点,大

6、致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢?例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。根据最小二乘法估计和就是未知参数a和b的最好估计,所以回归方程是所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为探究P4:

7、身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。5943616454505748体重/kg170155165175170157165165身高/cm87654321编号求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。探究P4:身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?答:身高为172cm的女大学生的体重不一定是60

8、.316kg,但一般可以认为她的体重在60.316kg左右。60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。在统计中,我们也把自变量x称为解析变量,因变量y称

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。