应用回归分析第5章课后习题集答案解析

应用回归分析第5章课后习题集答案解析

ID:40136840

大小:98.50 KB

页数:7页

时间:2019-07-22

应用回归分析第5章课后习题集答案解析_第1页
应用回归分析第5章课后习题集答案解析_第2页
应用回归分析第5章课后习题集答案解析_第3页
应用回归分析第5章课后习题集答案解析_第4页
应用回归分析第5章课后习题集答案解析_第5页
资源描述:

《应用回归分析第5章课后习题集答案解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第5章自变量选择与逐步回归思考与练习参考答案5.1自变量选择对回归参数的估计有何影响?答:回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢掉了重要的自变量,出现模型的设定偏误,这样模型容易出现异方差或自相关性,影响回归的效果;如果模型中增加了不必要的自变量,或者数据质量很差的自变量,不仅使得建模计算量增大,自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。5.2自变量选择对回归预测有何影响?答:当全模型(m元)正确采用选模型(p元)时,我们舍弃了m-p个自变量,回归

2、系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。当选模型(p元)正确采用全模型(m元)时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。5.3如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣?答:如果所建模型主要用于预测,则应使用统计量达到最

3、小的准则来衡量回归方程的优劣。5.4试述前进法的思想方法。答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,...,xm建立m个一元线性回归方程,并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的

4、三个变量(F值最大)进入回归方程。不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值Fα(1,n-p-1),回归过程结束。5.5试述后退法的思想方法。答:后退法的基本思想是:首先因变量Y对全部的自变量x1,x2,...,xm建立一个m元线性回归方程,并计算t检验值和F检验值,选择最不显著(P值最大且大于临界值)的偏回归系数的自变量剔除出回归方程。每一步只剔除一个变量,再建立m-1元线性回归方程,计算t检验值和F检验值,剔除偏回归系数的t检验值最小(P值最

5、大)的自变量,再建立新的回归方程。不断重复这一过程,直到无法剔除自变量时,即所有剩余p个自变量的F检验值均大于F检验临界值Fα(1,n-p-1),回归过程结束。5.6前进法、后退法各有哪些优缺点?答:前进法的优点是能够将对因变量有影响的自变量按显著性一一选入,计算量小。前进法的缺点是不能反映引进新变量后的变化,而且选入的变量就算不显著也不能删除。后退法的优点是是能够将对因变量没有显著影响的自变量按不显著性一一剔除,保留的自变量都是显著的。后退法的缺点是开始计算量大,当减少一个自变量时,它再也没机会进

6、入了。如果碰到自变量间有相关关系时,前进法和后退法所作的回归方程均会出现不同程度的问题。5.7试述逐步回归法的思想方法。答:逐步回归的基本思想是有进有出。具体做法是将变量一个一个的引入,当每引入一个自变量后,对已选入的变量要进行逐个检验,当原引入变量由于后面变量的应纳入而变得不再显著时,要将其剔除。引入一个变量或从回归防方程中剔除一个变量,为逐步回归的一步,每一步都要进行F检验,以确保每次引入新的变量之前回归方程中只包含显著的变量。这个过程反复进行,直到无显著变量引入回归方程,也无不显著变量从回归方

7、程中剔除为止。这样就避免了前进法和后退法各自的缺陷,保证了最后得到的回归子集是最优回归子集。5.8在运用逐步回归法时,α进和α出的赋值原则是什么?如果希望回归方程中多保留一些自变量,α进应如何赋值?答:原则是要求引入自变量的显著水平α进小于剔除自变量的显著性水平α出,否则可能出现死循环;若想回归方程多保留自变量,可以增大α进的值,使得更多自变量的P值在α进的范围内,但要注意,α进的值不得超过α出的值。5.9在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源

8、交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。为了建立国家财政收入回归模型,我们以财政收入y(亿元)为因变量,自变量如下:x1为农业增加值(亿元),x2为工业增加值(亿元),x3为建筑业增加值(亿元),x4为人口数(万人),x5为社会消费总额(亿元),x6为受灾面积(万公顷)。据《中国统计年鉴》获得1978—1998年共21个年份的统计数据,见表5.4(P167)。由定性分析知,所有自变量都与y有较强的相关性,分别用后退法和逐步回归法作自变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。