Using Linear Algebra for Intelligent Information Retrieval 1995

Using Linear Algebra for Intelligent Information Retrieval 1995

ID:40126037

大小:2.57 MB

页数:23页

时间:2019-07-22

Using Linear Algebra for Intelligent Information Retrieval 1995_第1页
Using Linear Algebra for Intelligent Information Retrieval 1995_第2页
Using Linear Algebra for Intelligent Information Retrieval 1995_第3页
Using Linear Algebra for Intelligent Information Retrieval 1995_第4页
Using Linear Algebra for Intelligent Information Retrieval 1995_第5页
资源描述:

《Using Linear Algebra for Intelligent Information Retrieval 1995》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SIAMREVIEW()1995SocietyforIndustrialandAppliedMathematicsVol.37,No.4,pp.573-595,December1995OO5USINGLINEARALGEBRAFORINTELLIGENTINFORMATIONRETRIEVAL*MICHAELW.BERRYt,SUSANT.DUMAIS$,ANDGAVINW.O'BRIENtAbstract.Currently,mostapproachestoretrievingtextualmaterialsfromscient

2、ificdatabasesdependonalexicalmatchbetweenwordsinusers'requestsandthoseinorassignedtodocumentsinadatabase.Becauseofthetremendousdiversityinthewordspeopleusetodescribethesamedocument,lexicalmethodsarenecessarilyincompleteandimprecise.Usingthesingularvaluedecomposition(S

3、VD),onecantakeadvantageoftheimplicithigher-orderstructureintheassociationoftermswithdocumentsbydeterminingtheSVDoflargesparsetermbydocumentmatrices.Termsanddocumentsrepresentedby200-300ofthelargestsingularvectorsarethenmatchedagainstuserqueries.Wecallthisretrievalmeth

4、odlatentsemanticindexing(LSI)becausethesubspacerepresentsimportantassociativerelationshipsbetweentermsanddocumentsthatarenotevidentinindividualdocuments.LSIisacompletelyautomaticyetintelligentindexingmethod,widelyapplicable,andapromisingwaytoimproveusers'accesstomanyk

5、indsoftextualmaterials,ortodocumentsandservicesforwhichtextualdescriptionsareavailable.AsurveyofthecomputationalrequirementsformanagingLSI-encodeddatabasesaswellascurrentandfutureapplicationsofLSIispresented.Keywords,indexing,information,latent,matrices,retrieval,sema

6、ntic,singularvaluedecomposition,sparse,updatingAMSsubjectclassifications.15A18,15A48,65F15,65F50,68P201.Introduction.Typically,informationisretrievedbyliterallymatchingtermsindocu-mentswiththoseofaquery.However,lexicalmatchingmethodscanbeinaccuratewhentheyareusedtomat

7、chauser'squery.Sincethereareusuallymanywaystoexpressagivenconcept(synonymy),theliteraltermsinauser'squerymaynotmatchthoseofarelevantdocument.Inaddition,mostwordshavemultiplemeanings(polysemy),sotermsinauser'squerywillliterallymatchtermsinirrelevantdocuments.Abetterapp

8、roachwouldallowuserstoretrieveinformationonthebasisofaconceptualtopicormeaningofadocument.Latentsemanticindexing(LSI)[4]trie

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。