电力生产的数学建模问题

电力生产的数学建模问题

ID:40117922

大小:426.01 KB

页数:30页

时间:2019-07-21

电力生产的数学建模问题_第1页
电力生产的数学建模问题_第2页
电力生产的数学建模问题_第3页
电力生产的数学建模问题_第4页
电力生产的数学建模问题_第5页
资源描述:

《电力生产的数学建模问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、电力生产问题的数学模型摘要本文针对发电机厂每天在不同时间段用电需求量不同的情况下,根据给定不同型号不同数量的发电机,合理分配各台发电机在不同时间段的开启数量和运行功率,使得一天内总发电成本最小的问题,采用单目标非线性规划方法,建立所求问题的最优化模型,借助Lingo软件对模型进行求解,得到每日最小发电总成本。对于问题—:由已知条件可知发电总成本由固定成本、边际成本、启动成本组成,据此,我们确定了三个指标:即固定成本总和、边际成本总和、启动成本总和。总成本即为这三项成本总和。每天分为七个时段,发电机共有四种型号,方

2、案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,通过分析未知数与所给数据之间的关系来列出相应的约束条件,写出成本函数表达式,然后通过LINGO求出个时段各种型号发电机的实际发出的功率及所需要运行的台数,从而求出最小总成本1427810元。对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与第一问相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大功率之和乘以80%后大于用电需求,所以可以按照问题—建立的模型,将其约束条件中每个时间

3、段用电量的需求量提高25%,最终得出此情况下每天的最小成本为:1829955元。关键词:单机输出功率使用数量总成本1.问题重述1.1问题背景为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。表1:每日用电需求(兆瓦)时段(0-24)0-66-99-1212-1414-1818-2222-24需求11000330002500036000250003000018000为了便于观察每天的用量需求,将数据重新整理,转化为图1所示的图表。图1各时间段的用电需求量从图表中可以清晰的

4、观察到每天用电需求变化,在第一阶段用电量需求处于低谷时段,第四阶段处于峰值时段,且用电量需求变化最大。每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。表2:发电机情况项目型号可用数量最小输出功率(MW)最大输出功率(MW)固定成本(元/小时)每兆瓦边际成本(元/小时)启动成本型号1108001800220

5、02.75000型号251000150018002.21600型号381200200038001.82400型号441800350048003.81200只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。1.2需要解决的问题问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少?问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为

6、多少?2.模型假设假设1:发电机工作期间不发生任何故障。假设2:关闭和启动发电机时均是瞬时完成,不记相应使用的时间。假设3:发电机自身功率没有损耗。假设4:调整发电机功率没有成本。假设5:发电机生产的电量在传输过程中没有损耗。3.符号说明符号符号说明时段,取1、2、3、4、5、6、7发电机型号,取1、2、3、4 第i时段型号j发电机使用数量 第i时段单个型号j的功率 发电机在第i时段的工作时间型号j发电机的数量上限第i时段所需要功率第i时段所输出的最大功率,即1,25倍需求功率第i时段所输出的实际功率 型号j发电

7、机的最小输出功率型号j发电机的最大输出功率 型号j发电机的固定成本 型号j发电机工作时的每兆瓦边际成本 每台型号j的启动成本4.问题分析此题研究的是电力生产中在满足每日电力需求的条件下,使每日的总成本达到最小的数学建模问题。针对问题一:从以下三方面来分析(1)对已知条件的分析:从已知的条件来看,本题将一天分为了七个时间段,在每一个时间段都有对应的电力需求量。为了满足每日的电力需求,有四种型号的发电机可供使用,每种型号的发电机都已知其可用数量、最小输出功率、最大输出功率、固定成本、每兆瓦边际成本、启用成本。要使总成

8、本达到最小,则问题的目标函数就是总成本函数。(1)对目标函数的分析:总成本由三个指标组成,即每天四种型号发电机的固定总成本、每天四种型号发电机边际总成本、每天四种型号发电机启动总成本。分别对每个指标进行分析。每天四种型号发电机固定总成本为第i个时间段的时间、型号j发电机在第i个时间段的数量、型号j发电机每小时的固定成本这三者之积的总和。每天四种型号发电机边际总成本为第i个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。