资源描述:
《Numerical Methods for Partial Differential Eq》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、NumericalMethodsforPartialDifferentialEquationsEricdeSturlerDepartmentofComputerScienceUniversityofIllinoisatUrbana-Champaign11/19/20031©2002EricdeSturlerWhyMoreGeneralSpacesWenowprovideamoreformalframeworkfortheapproximationofsolutionsofPDEsandthesolutiontocertainminimizat
2、ionproblems.Firstweneedtoextendthespaceoffunctionsoverwhichwework2(sayCab[,]forone-dimensionalsecondorderequations).21.ManyusefulproblemsdonothaveaCsolution2.Approximationoversubspaceofbasisfunctions(say,piecewise2polynomials)maynoteasilygiveapproximationthatisC.3.Usefultod
3、efinebestapproximatesolutionusingorthogonalprojection,whichinturnrequiresthespacetobecomplete.Firstweneedtointroduceanumberofconcepts.11/19/20032©2002EricdeSturlerTheSpaceL2b2DefinethespaceLab[],:=→{}fab[],
4、fdx<∞with2∫a12bb2innerproductuv,=∫uvdxandnormuu=(∫dx).aaHere∫dxde
5、notesLebesgueintegral,whichismoregeneralthantheRiemannintegral,butyieldsthesamevaluewhentheRiemannintegralisdefined.Aconsequenceoftheabovechoicefornormandspaceisthatb()2∫uvd−=x0⇒uv=aevenwhenux()=vx()isnottrueforallxa∈[,b].Suchuandvaremembersofequivalenceclass.11/19/20033©20
6、02EricdeSturlerTheSpacexxif≠12Consider(ab==0,1),uxx:→,andvx:→.0ifx=120ifx≠12Then,uv−=11ifx=.221112However,∫∫00()u−=vdx00dx+∫1dx=0.2So,aselementsofLwehaveuv=evenifuv(11)≠().222Wesayuv=almosteverywhere(a.e.)11/19/20034©2002EricdeSturlerTheSpaceFunctionsareeq
7、ualiftheydiffer(only)onasetofmeasurezero.Anydenumerable(countable)sethasmeasurezero.xx2,∈Letux()=∈1,xab[]andvx()=.1,xa∈[],bbThen()2∫uvd−=x0aAgain,aselementsofLwehaveuv=eventhoughuv≠for2everyx∈.Thefunctionsuandvarealsosaidtobemembersofthesameequivalenceclass.Ing
8、eneral,werepresentanequivalenceclassoffunctionsbyitssmoothestmember.11/19/20035©2002EricdeSturlerTheSpaceVerifythatuv,anduforalluvLab,,∈[]satisfytheproperties2fora(real)innerproductandnorm,andLab[,]isavectorspace.2ForanyHCHx∈>:0()wecandefinetheH-innerproduct1bb22uv,=Huvdxan
9、dH-normuHH=(udx).H∫∫aauv,,=vuu≥0ααuv,,=uvuu=⇔=00uu,0≥ααuu=uu,0==ifandonlyifu0uvuv+