Numerical Methods for Partial Differential Eq

Numerical Methods for Partial Differential Eq

ID:40086515

大小:2.70 MB

页数:25页

时间:2019-07-20

Numerical Methods for Partial Differential Eq_第1页
Numerical Methods for Partial Differential Eq_第2页
Numerical Methods for Partial Differential Eq_第3页
Numerical Methods for Partial Differential Eq_第4页
Numerical Methods for Partial Differential Eq_第5页
资源描述:

《Numerical Methods for Partial Differential Eq》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、NumericalMethodsforPartialDifferentialEquationsEricdeSturlerDepartmentofComputerScienceUniversityofIllinoisatUrbana-Champaign11/19/20031©2002EricdeSturlerWhyMoreGeneralSpacesWenowprovideamoreformalframeworkfortheapproximationofsolutionsofPDEsandthesolutiontocertainminimizat

2、ionproblems.Firstweneedtoextendthespaceoffunctionsoverwhichwework2(sayCab[,]forone-dimensionalsecondorderequations).21.ManyusefulproblemsdonothaveaCsolution2.Approximationoversubspaceofbasisfunctions(say,piecewise2polynomials)maynoteasilygiveapproximationthatisC.3.Usefultod

3、efinebestapproximatesolutionusingorthogonalprojection,whichinturnrequiresthespacetobecomplete.Firstweneedtointroduceanumberofconcepts.11/19/20032©2002EricdeSturlerTheSpaceL2b2DefinethespaceLab[],:=→{}fab[],

4、fdx<∞with2∫a12bb2innerproductuv,=∫uvdxandnormuu=(∫dx).aaHere∫dxde

5、notesLebesgueintegral,whichismoregeneralthantheRiemannintegral,butyieldsthesamevaluewhentheRiemannintegralisdefined.Aconsequenceoftheabovechoicefornormandspaceisthatb()2∫uvd−=x0⇒uv=aevenwhenux()=vx()isnottrueforallxa∈[,b].Suchuandvaremembersofequivalenceclass.11/19/20033©20

6、02EricdeSturlerTheSpacexxif≠12Consider(ab==0,1),uxx:→,andvx:→.0ifx=120ifx≠12Then,uv−=11ifx=.221112However,∫∫00()u−=vdx00dx+∫1dx=0.2So,aselementsofLwehaveuv=evenifuv(11)≠().222Wesayuv=almosteverywhere(a.e.)11/19/20034©2002EricdeSturlerTheSpaceFunctionsareeq

7、ualiftheydiffer(only)onasetofmeasurezero.Anydenumerable(countable)sethasmeasurezero.xx2,∈Letux()=∈1,xab[]andvx()=.1,xa∈[],bbThen()2∫uvd−=x0aAgain,aselementsofLwehaveuv=eventhoughuv≠for2everyx∈.Thefunctionsuandvarealsosaidtobemembersofthesameequivalenceclass.Ing

8、eneral,werepresentanequivalenceclassoffunctionsbyitssmoothestmember.11/19/20035©2002EricdeSturlerTheSpaceVerifythatuv,anduforalluvLab,,∈[]satisfytheproperties2fora(real)innerproductandnorm,andLab[,]isavectorspace.2ForanyHCHx∈>:0()wecandefinetheH-innerproduct1bb22uv,=Huvdxan

9、dH-normuHH=(udx).H∫∫aauv,,=vuu≥0ααuv,,=uvuu=⇔=00uu,0≥ααuu=uu,0==ifandonlyifu0uvuv+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。