Invariance_and_first_integrals_of_canonical_Hamiltonian_equations

Invariance_and_first_integrals_of_canonical_Hamiltonian_equations

ID:40082098

大小:166.58 KB

页数:18页

时间:2019-07-20

Invariance_and_first_integrals_of_canonical_Hamiltonian_equations_第1页
Invariance_and_first_integrals_of_canonical_Hamiltonian_equations_第2页
Invariance_and_first_integrals_of_canonical_Hamiltonian_equations_第3页
Invariance_and_first_integrals_of_canonical_Hamiltonian_equations_第4页
Invariance_and_first_integrals_of_canonical_Hamiltonian_equations_第5页
资源描述:

《Invariance_and_first_integrals_of_canonical_Hamiltonian_equations》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InvarianceandfirstintegralsofcanonicalHamiltonianequationsVladimirDorodnitsyn∗andRomanKozlov‡∗KeldyshInstituteofAppliedMathematics,RussianAcademyofScience,MiusskayaPl.4,Moscow,125047,Russia;E-mailaddress:dorod@spp.Keldysh.ru‡DepartmentofMathematics,UniversityofBergen,Joha

2、nnesBrunsgate12,5008Bergen,Norway;E-mailaddress:Roman.Kozlov@math.uib.no01.09.2008AbstractInthispaperweconsidertherelationbetweensymmetriesandfirstintegralsofcanonicalHamiltonianequations.Basedonanewlyestablishedidentity(whichisananalogofwellknownNoether’siden-tityforLagr

3、angianapproach),thisapproachprovidesasimpleandclearwaytoconstructfirstintegralswiththehelpofsymmetriesofaHamiltonian.Theapproachisillustratedbyanumberofexamples,includingequationsofthethree-dimensionalKeplermotion.1IntroductionarXiv:0809.1361v1[math-ph]8Sep2008Ithasbeenkn

4、ownsinceE.Noether’sfundamentalworkthatconservationlawsofdifferentialequationsareconnectedwiththeirsymmetryproperties[1].Forconveniencewepresentheresomewell–knownresults(seealso,forexample,[2],[3],[4])forbothLagrangianandHamiltonianapproachestoconservationlaws(firstintegral

5、s).LetusconsiderthefunctionalZL(u)=L(x,u,u1)dx,(1.1)Ωwherex=(x1,x2,...,xm)areindependentvariables,u=(u1,u2,...,un)arede-kk∂ukpendentvariables,u1=(ui),ui=∂xiarefirstorderderivatives,Ωisadomain1inRmandL(x,u,u)isafirstorderLagrangian.Thefunctional(1.1)achieves1itsextremalvalu

6、eswhenu(x)satisfiestheEuler–LagrangeequationsδL∂L∂L=−Di=0,k=1,...,n,(1.2)δuk∂uk∂ukiwhere∂∂∂kkDi=∂xi+ui∂uk+uji∂uk+···,i=1,...,mjaretotaldifferentiationoperators.Hereandbelowweassumesummationoverrepeatedindexes.Notethatequations(1.2)aresecondorderPDEs.WeconsideraLiepointtr

7、ansformationgroupGgeneratedbytheinfinitesimaloperatori∂k∂X=ξ(x,u)+η(x,u)+...,(1.3)∂xi∂ukwheredotsmeananappropriateprolongationoftheoperatoronpartialderiva-tives[5],[6],[7],[8].ThegroupGiscalledavariationalsymmetryofthefunctionalL(u)ifandonlyiftheLagrangiansatisfies[1]iX(L)

8、+LDi(ξ)=0,(1.4)whereXisthefirstprolongation,i.e.theprolongationofthevectorfieldXonthefirstderivativesuk.We

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签