Concerning the shortest line on any surface by which any two points

Concerning the shortest line on any surface by which any two points

ID:40057606

大小:206.16 KB

页数:16页

时间:2019-07-18

Concerning the shortest line on any surface by which any two points_第1页
Concerning the shortest line on any surface by which any two points_第2页
Concerning the shortest line on any surface by which any two points_第3页
Concerning the shortest line on any surface by which any two points_第4页
Concerning the shortest line on any surface by which any two points_第5页
资源描述:

《Concerning the shortest line on any surface by which any two points》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Comm:Ac.Scient.Petr.Tom.IIIp.110;Nov.1728.L.Euler.1Concerningtheshortestlineonanysurfacebywhichanytwopointscanbejoinedtogether.E009:Translated&AnnotatedbyIanBruce.Concerningtheshortestlineonanysurfacebywhichanytwopointscanbejoinedtogether.AuthorLeonardEuler.1.Itiswe

2、ll-knownthattheshortestlineorpathfromagivepointtosomeotherpointisastraightline,whichisconsideredasanaxionbymanywriters.Itiseasilyunderstoodfromthisthatwhenthesurfaceisaplane,theshortestdistancejoininganytwopoints[intheplane]isthestraightlinedrawnfromonetotheother.On

3、asphericalsurface,onwhichitisnotpossibletodrawstraightlines,ithasbeenestablishedbythegeometersthattheshortestpathbetweentwogivenpointsisthe[shorterarcofthe]greatcirclejoiningthem.2.However,foranysurfaceeitherconvexorconcave,withoutbeingamixtureofthetwo,whattheshorte

4、stpathshallbe,drawnfromonegivenpointtoanyother,hasnotyetgenerallybeendetermined.ThemostcelebratedJohanBernoullihasproposedthisquestiontome,indicatingthathehimselfhasfoundthegeneralequation,inorderthattheshortestlinetobeappliedtoagivensurfacebetweenanytwogivenpointsc

5、anbefound.Itoohavesolvedthisproblem,andIwanttosetoutthesolutioninthisdissertation.3.Mechanicallythisproblemiseasilysolvedwiththehelpofathreadwhichisstretchedbetweenthetwogivenpoints:thelengthitbecomeswilldesignatetheshortestpathontheproposedsurface.Moreoveritisneces

6、sarythatthesurfaceisconvex,inorderthatthisthreadtouchesthesurfaceeverywhere,forwithconcavesurfacestheshortestlengthisnotrepresentedbythearcofacurvebutindeedbythechord[joiningthepoints;thoughthischorddoesnotlieonthesurface].Thereforeinthiscasethethreadoughttobeapplie

7、dthus,ortobesoconsideredinthisapplication,thatitalwaystouchesthesurfaceinaconvexpart.4.Truly,anyonewhowishestoexaminethenatureoftheinnermostsecretsofthisline,andwhoisaccustomedtohavinganequationsetup,cannotbesatisfiedwiththisgeometricalconstruction.Moreover,thelines

8、oughtthathasbeenseenfromamechanicalconstructionishardlyonethatissetout[inamathematicalsense],andneithercanthenatureofthelinebeexamined.Ona

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。